Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y=ax^{2}-\left(2ax-3x\right)+a-1
Whakamahia te āhuatanga tohatoha hei whakarea te 2a-3 ki te x.
y=ax^{2}-2ax+3x+a-1
Hei kimi i te tauaro o 2ax-3x, kimihia te tauaro o ia taurangi.
ax^{2}-2ax+3x+a-1=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ax^{2}-2ax+a-1=y-3x
Tangohia te 3x mai i ngā taha e rua.
ax^{2}-2ax+a=y-3x+1
Me tāpiri te 1 ki ngā taha e rua.
\left(x^{2}-2x+1\right)a=y-3x+1
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(x^{2}-2x+1\right)a=1+y-3x
He hanga arowhānui tō te whārite.
\frac{\left(x^{2}-2x+1\right)a}{x^{2}-2x+1}=\frac{1+y-3x}{x^{2}-2x+1}
Whakawehea ngā taha e rua ki te x^{2}-2x+1.
a=\frac{1+y-3x}{x^{2}-2x+1}
Mā te whakawehe ki te x^{2}-2x+1 ka wetekia te whakareanga ki te x^{2}-2x+1.
a=\frac{1+y-3x}{\left(x-1\right)^{2}}
Whakawehe y-3x+1 ki te x^{2}-2x+1.
y=ax^{2}-\left(2ax-3x\right)+a-1
Whakamahia te āhuatanga tohatoha hei whakarea te 2a-3 ki te x.
y=ax^{2}-2ax+3x+a-1
Hei kimi i te tauaro o 2ax-3x, kimihia te tauaro o ia taurangi.
ax^{2}-2ax+3x+a-1=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ax^{2}-2ax+a-1=y-3x
Tangohia te 3x mai i ngā taha e rua.
ax^{2}-2ax+a=y-3x+1
Me tāpiri te 1 ki ngā taha e rua.
\left(x^{2}-2x+1\right)a=y-3x+1
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(x^{2}-2x+1\right)a=1+y-3x
He hanga arowhānui tō te whārite.
\frac{\left(x^{2}-2x+1\right)a}{x^{2}-2x+1}=\frac{1+y-3x}{x^{2}-2x+1}
Whakawehea ngā taha e rua ki te x^{2}-2x+1.
a=\frac{1+y-3x}{x^{2}-2x+1}
Mā te whakawehe ki te x^{2}-2x+1 ka wetekia te whakareanga ki te x^{2}-2x+1.
a=\frac{1+y-3x}{\left(x-1\right)^{2}}
Whakawehe y-3x+1 ki te x^{2}-2x+1.