y = a ( x + 1
Whakaoti mō a (complex solution)
\left\{\begin{matrix}a=\frac{y}{x+1}\text{, }&x\neq -1\\a\in \mathrm{C}\text{, }&y=0\text{ and }x=-1\end{matrix}\right.
Whakaoti mō x (complex solution)
\left\{\begin{matrix}x=\frac{y}{a}-1\text{, }&a\neq 0\\x\in \mathrm{C}\text{, }&y=0\text{ and }a=0\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}a=\frac{y}{x+1}\text{, }&x\neq -1\\a\in \mathrm{R}\text{, }&y=0\text{ and }x=-1\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}x=\frac{y}{a}-1\text{, }&a\neq 0\\x\in \mathrm{R}\text{, }&y=0\text{ and }a=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=ax+a
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te x+1.
ax+a=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x+1\right)a=y
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(x+1\right)a}{x+1}=\frac{y}{x+1}
Whakawehea ngā taha e rua ki te x+1.
a=\frac{y}{x+1}
Mā te whakawehe ki te x+1 ka wetekia te whakareanga ki te x+1.
y=ax+a
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te x+1.
ax+a=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ax=y-a
Tangohia te a mai i ngā taha e rua.
\frac{ax}{a}=\frac{y-a}{a}
Whakawehea ngā taha e rua ki te a.
x=\frac{y-a}{a}
Mā te whakawehe ki te a ka wetekia te whakareanga ki te a.
x=\frac{y}{a}-1
Whakawehe y-a ki te a.
y=ax+a
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te x+1.
ax+a=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x+1\right)a=y
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(x+1\right)a}{x+1}=\frac{y}{x+1}
Whakawehea ngā taha e rua ki te x+1.
a=\frac{y}{x+1}
Mā te whakawehe ki te x+1 ka wetekia te whakareanga ki te x+1.
y=ax+a
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te x+1.
ax+a=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ax=y-a
Tangohia te a mai i ngā taha e rua.
\frac{ax}{a}=\frac{y-a}{a}
Whakawehea ngā taha e rua ki te a.
x=\frac{y-a}{a}
Mā te whakawehe ki te a ka wetekia te whakareanga ki te a.
x=\frac{y}{a}-1
Whakawehe y-a ki te a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}