Tīpoka ki ngā ihirangi matua
Whakaoti mō E (complex solution)
Tick mark Image
Whakaoti mō E
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y=E-Ec^{\frac{-t}{4}}
Whakamahia te āhuatanga tohatoha hei whakarea te E ki te 1-c^{\frac{-t}{4}}.
E-Ec^{\frac{-t}{4}}=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-Ec^{-\frac{t}{4}}+E=y
Whakaraupapatia anō ngā kīanga tau.
\left(-c^{-\frac{t}{4}}+1\right)E=y
Pahekotia ngā kīanga tau katoa e whai ana i te E.
\left(1-c^{-\frac{t}{4}}\right)E=y
He hanga arowhānui tō te whārite.
\frac{\left(1-c^{-\frac{t}{4}}\right)E}{1-c^{-\frac{t}{4}}}=\frac{y}{1-c^{-\frac{t}{4}}}
Whakawehea ngā taha e rua ki te -c^{-\frac{1}{4}t}+1.
E=\frac{y}{1-c^{-\frac{t}{4}}}
Mā te whakawehe ki te -c^{-\frac{1}{4}t}+1 ka wetekia te whakareanga ki te -c^{-\frac{1}{4}t}+1.
E=\frac{yc^{\frac{t}{4}}}{c^{\frac{t}{4}}-1}
Whakawehe y ki te -c^{-\frac{1}{4}t}+1.
y=E-Ec^{\frac{-t}{4}}
Whakamahia te āhuatanga tohatoha hei whakarea te E ki te 1-c^{\frac{-t}{4}}.
E-Ec^{\frac{-t}{4}}=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-Ec^{-\frac{t}{4}}+E=y
Whakaraupapatia anō ngā kīanga tau.
\left(-c^{-\frac{t}{4}}+1\right)E=y
Pahekotia ngā kīanga tau katoa e whai ana i te E.
\left(1-c^{-\frac{t}{4}}\right)E=y
He hanga arowhānui tō te whārite.
\frac{\left(1-c^{-\frac{t}{4}}\right)E}{1-c^{-\frac{t}{4}}}=\frac{y}{1-c^{-\frac{t}{4}}}
Whakawehea ngā taha e rua ki te -c^{-\frac{1}{4}t}+1.
E=\frac{y}{1-c^{-\frac{t}{4}}}
Mā te whakawehe ki te -c^{-\frac{1}{4}t}+1 ka wetekia te whakareanga ki te -c^{-\frac{1}{4}t}+1.
E=\frac{yc^{\frac{t}{4}}}{c^{\frac{t}{4}}-1}
Whakawehe y ki te -c^{-\frac{1}{4}t}+1.