Whakaoti mō y
y=1598.57
Tautapa y
y≔1598.57
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=1600-\frac{1\times 10+1}{10}\times 1.3
Tātaihia te 40 mā te pū o 2, kia riro ko 1600.
y=1600-\frac{10+1}{10}\times 1.3
Whakareatia te 1 ki te 10, ka 10.
y=1600-\frac{11}{10}\times 1.3
Tāpirihia te 10 ki te 1, ka 11.
y=1600-\frac{11}{10}\times \frac{13}{10}
Me tahuri ki tau ā-ira 1.3 ki te hautau \frac{13}{10}.
y=1600-\frac{11\times 13}{10\times 10}
Me whakarea te \frac{11}{10} ki te \frac{13}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
y=1600-\frac{143}{100}
Mahia ngā whakarea i roto i te hautanga \frac{11\times 13}{10\times 10}.
y=\frac{160000}{100}-\frac{143}{100}
Me tahuri te 1600 ki te hautau \frac{160000}{100}.
y=\frac{160000-143}{100}
Tā te mea he rite te tauraro o \frac{160000}{100} me \frac{143}{100}, me tango rāua mā te tango i ō raua taurunga.
y=\frac{159857}{100}
Tangohia te 143 i te 160000, ka 159857.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}