Whakaoti mō x
x=-\frac{6-y}{y-4}
y\neq 4
Whakaoti mō y
y=-\frac{2\left(2x-3\right)}{1-x}
x\neq 1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y\left(-x+1\right)=\left(-x+1\right)\times 4+2
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -x+1.
-yx+y=\left(-x+1\right)\times 4+2
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te -x+1.
-yx+y=-4x+4+2
Whakamahia te āhuatanga tohatoha hei whakarea te -x+1 ki te 4.
-yx+y=-4x+6
Tāpirihia te 4 ki te 2, ka 6.
-yx+y+4x=6
Me tāpiri te 4x ki ngā taha e rua.
-yx+4x=6-y
Tangohia te y mai i ngā taha e rua.
\left(-y+4\right)x=6-y
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(4-y\right)x=6-y
He hanga arowhānui tō te whārite.
\frac{\left(4-y\right)x}{4-y}=\frac{6-y}{4-y}
Whakawehea ngā taha e rua ki te -y+4.
x=\frac{6-y}{4-y}
Mā te whakawehe ki te -y+4 ka wetekia te whakareanga ki te -y+4.
x=\frac{6-y}{4-y}\text{, }x\neq 1
Tē taea kia ōrite te tāupe x ki 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}