Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-\frac{2x}{5}=0
Whakaarohia te whārite tuatahi. Tangohia te \frac{2x}{5} mai i ngā taha e rua.
5y-2x=0
Whakareatia ngā taha e rua o te whārite ki te 5.
5x+y=-5
Whakaarohia te whārite tuarua. Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
5y-2x=0,y+5x=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5y-2x=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
5y=2x
Me tāpiri 2x ki ngā taha e rua o te whārite.
y=\frac{1}{5}\times 2x
Whakawehea ngā taha e rua ki te 5.
y=\frac{2}{5}x
Whakareatia \frac{1}{5} ki te 2x.
\frac{2}{5}x+5x=-5
Whakakapia te \frac{2x}{5} mō te y ki tērā atu whārite, y+5x=-5.
\frac{27}{5}x=-5
Tāpiri \frac{2x}{5} ki te 5x.
x=-\frac{25}{27}
Whakawehea ngā taha e rua o te whārite ki te \frac{27}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{2}{5}\left(-\frac{25}{27}\right)
Whakaurua te -\frac{25}{27} mō x ki y=\frac{2}{5}x. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-\frac{10}{27}
Whakareatia \frac{2}{5} ki te -\frac{25}{27} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=-\frac{10}{27},x=-\frac{25}{27}
Kua oti te pūnaha te whakatau.
y-\frac{2x}{5}=0
Whakaarohia te whārite tuatahi. Tangohia te \frac{2x}{5} mai i ngā taha e rua.
5y-2x=0
Whakareatia ngā taha e rua o te whārite ki te 5.
5x+y=-5
Whakaarohia te whārite tuarua. Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
5y-2x=0,y+5x=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-2\\1&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-2\\1&5\end{matrix}\right))\left(\begin{matrix}5&-2\\1&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&5\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-2\\1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&5\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&5\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-2\right)}&-\frac{-2}{5\times 5-\left(-2\right)}\\-\frac{1}{5\times 5-\left(-2\right)}&\frac{5}{5\times 5-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{27}&\frac{2}{27}\\-\frac{1}{27}&\frac{5}{27}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{27}\left(-5\right)\\\frac{5}{27}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{27}\\-\frac{25}{27}\end{matrix}\right)
Mahia ngā tātaitanga.
y=-\frac{10}{27},x=-\frac{25}{27}
Tangohia ngā huānga poukapa y me x.
y-\frac{2x}{5}=0
Whakaarohia te whārite tuatahi. Tangohia te \frac{2x}{5} mai i ngā taha e rua.
5y-2x=0
Whakareatia ngā taha e rua o te whārite ki te 5.
5x+y=-5
Whakaarohia te whārite tuarua. Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
5y-2x=0,y+5x=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5y-2x=0,5y+5\times 5x=5\left(-5\right)
Kia ōrite ai a 5y me y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
5y-2x=0,5y+25x=-25
Whakarūnātia.
5y-5y-2x-25x=25
Me tango 5y+25x=-25 mai i 5y-2x=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2x-25x=25
Tāpiri 5y ki te -5y. Ka whakakore atu ngā kupu 5y me -5y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-27x=25
Tāpiri -2x ki te -25x.
x=-\frac{25}{27}
Whakawehea ngā taha e rua ki te -27.
y+5\left(-\frac{25}{27}\right)=-5
Whakaurua te -\frac{25}{27} mō x ki y+5x=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y-\frac{125}{27}=-5
Whakareatia 5 ki te -\frac{25}{27}.
y=-\frac{10}{27}
Me tāpiri \frac{125}{27} ki ngā taha e rua o te whārite.
y=-\frac{10}{27},x=-\frac{25}{27}
Kua oti te pūnaha te whakatau.