Whakaoti mō x
x=-\left(2-y\right)^{2}+5
2-y\geq 0
Whakaoti mō x (complex solution)
x=-\left(2-y\right)^{2}+5
y=2\text{ or }arg(2-y)<\pi
Whakaoti mō y (complex solution)
y=-\sqrt{5-x}+2
Whakaoti mō y
y=-\sqrt{5-x}+2
x\leq 5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2-\sqrt{5-x}=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\sqrt{5-x}=y-2
Tangohia te 2 mai i ngā taha e rua.
\frac{-\sqrt{-x+5}}{-1}=\frac{y-2}{-1}
Whakawehea ngā taha e rua ki te -1.
\sqrt{-x+5}=\frac{y-2}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
\sqrt{-x+5}=2-y
Whakawehe y-2 ki te -1.
-x+5=\left(2-y\right)^{2}
Pūruatia ngā taha e rua o te whārite.
-x+5-5=\left(2-y\right)^{2}-5
Me tango 5 mai i ngā taha e rua o te whārite.
-x=\left(2-y\right)^{2}-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{-x}{-1}=\frac{\left(2-y\right)^{2}-5}{-1}
Whakawehea ngā taha e rua ki te -1.
x=\frac{\left(2-y\right)^{2}-5}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x=-\left(2-y\right)^{2}+5
Whakawehe \left(-y+2\right)^{2}-5 ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}