Whakaoti mō y
y=21\sqrt{10}\approx 66.407830864
Tautapa y
y≔21\sqrt{10}
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=2\left(6\sqrt{10}+2\sqrt{2}\sqrt{405}\right)+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Tauwehea te 360=6^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 10} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{10}. Tuhia te pūtakerua o te 6^{2}.
y=2\left(6\sqrt{10}+2\sqrt{2}\times 9\sqrt{5}\right)+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Tauwehea te 405=9^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{9^{2}\times 5} hei hua o ngā pūtake rua \sqrt{9^{2}}\sqrt{5}. Tuhia te pūtakerua o te 9^{2}.
y=2\left(6\sqrt{10}+18\sqrt{2}\sqrt{5}\right)+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Whakareatia te 2 ki te 9, ka 18.
y=2\left(6\sqrt{10}+18\sqrt{10}\right)+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
y=2\times 24\sqrt{10}+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Pahekotia te 6\sqrt{10} me 18\sqrt{10}, ka 24\sqrt{10}.
y=48\sqrt{10}+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Whakareatia te 2 ki te 24, ka 48.
y=48\sqrt{10}+3\left(9\sqrt{10}-\sqrt{20}\sqrt{162}\right)
Tauwehea te 810=9^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{9^{2}\times 10} hei hua o ngā pūtake rua \sqrt{9^{2}}\sqrt{10}. Tuhia te pūtakerua o te 9^{2}.
y=48\sqrt{10}+3\left(9\sqrt{10}-2\sqrt{5}\sqrt{162}\right)
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
y=48\sqrt{10}+3\left(9\sqrt{10}-2\sqrt{5}\times 9\sqrt{2}\right)
Tauwehea te 162=9^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{9^{2}\times 2} hei hua o ngā pūtake rua \sqrt{9^{2}}\sqrt{2}. Tuhia te pūtakerua o te 9^{2}.
y=48\sqrt{10}+3\left(9\sqrt{10}-18\sqrt{5}\sqrt{2}\right)
Whakareatia te 2 ki te 9, ka 18.
y=48\sqrt{10}+3\left(9\sqrt{10}-18\sqrt{10}\right)
Hei whakarea \sqrt{5} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
y=48\sqrt{10}+3\left(-9\right)\sqrt{10}
Pahekotia te 9\sqrt{10} me -18\sqrt{10}, ka -9\sqrt{10}.
y=48\sqrt{10}-27\sqrt{10}
Whakareatia te 3 ki te -9, ka -27.
y=21\sqrt{10}
Pahekotia te 48\sqrt{10} me -27\sqrt{10}, ka 21\sqrt{10}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}