Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Tautapa y
Tick mark Image
Graph

Tohaina

y=2\left(6\sqrt{10}+2\sqrt{2}\sqrt{405}\right)+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Tauwehea te 360=6^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 10} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{10}. Tuhia te pūtakerua o te 6^{2}.
y=2\left(6\sqrt{10}+2\sqrt{2}\times 9\sqrt{5}\right)+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Tauwehea te 405=9^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{9^{2}\times 5} hei hua o ngā pūtake rua \sqrt{9^{2}}\sqrt{5}. Tuhia te pūtakerua o te 9^{2}.
y=2\left(6\sqrt{10}+18\sqrt{2}\sqrt{5}\right)+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Whakareatia te 2 ki te 9, ka 18.
y=2\left(6\sqrt{10}+18\sqrt{10}\right)+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
y=2\times 24\sqrt{10}+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Pahekotia te 6\sqrt{10} me 18\sqrt{10}, ka 24\sqrt{10}.
y=48\sqrt{10}+3\left(\sqrt{810}-\sqrt{20}\sqrt{162}\right)
Whakareatia te 2 ki te 24, ka 48.
y=48\sqrt{10}+3\left(9\sqrt{10}-\sqrt{20}\sqrt{162}\right)
Tauwehea te 810=9^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{9^{2}\times 10} hei hua o ngā pūtake rua \sqrt{9^{2}}\sqrt{10}. Tuhia te pūtakerua o te 9^{2}.
y=48\sqrt{10}+3\left(9\sqrt{10}-2\sqrt{5}\sqrt{162}\right)
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
y=48\sqrt{10}+3\left(9\sqrt{10}-2\sqrt{5}\times 9\sqrt{2}\right)
Tauwehea te 162=9^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{9^{2}\times 2} hei hua o ngā pūtake rua \sqrt{9^{2}}\sqrt{2}. Tuhia te pūtakerua o te 9^{2}.
y=48\sqrt{10}+3\left(9\sqrt{10}-18\sqrt{5}\sqrt{2}\right)
Whakareatia te 2 ki te 9, ka 18.
y=48\sqrt{10}+3\left(9\sqrt{10}-18\sqrt{10}\right)
Hei whakarea \sqrt{5} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
y=48\sqrt{10}+3\left(-9\right)\sqrt{10}
Pahekotia te 9\sqrt{10} me -18\sqrt{10}, ka -9\sqrt{10}.
y=48\sqrt{10}-27\sqrt{10}
Whakareatia te 3 ki te -9, ka -27.
y=21\sqrt{10}
Pahekotia te 48\sqrt{10} me -27\sqrt{10}, ka 21\sqrt{10}.