Whakaoti mō y
y=-x\left(x-9\right)\left(x-3\right)\left(x-2\right)\left(x+6\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=\left(\left(-x\right)x-2\left(-x\right)\right)\left(x-3\right)\left(x-9\right)\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -x ki te x-2.
y=\left(\left(-x\right)x+2x\right)\left(x-3\right)\left(x-9\right)\left(x+6\right)
Whakareatia te -2 ki te -1, ka 2.
y=\left(\left(-x\right)x^{2}-3\left(-x\right)x+2x^{2}-6x\right)\left(x-9\right)\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \left(-x\right)x+2x ki te x-3.
y=\left(\left(-x\right)x^{2}+3xx+2x^{2}-6x\right)\left(x-9\right)\left(x+6\right)
Whakareatia te -3 ki te -1, ka 3.
y=\left(\left(-x\right)x^{2}+3x^{2}+2x^{2}-6x\right)\left(x-9\right)\left(x+6\right)
Whakareatia te x ki te x, ka x^{2}.
y=\left(\left(-x\right)x^{2}+5x^{2}-6x\right)\left(x-9\right)\left(x+6\right)
Pahekotia te 3x^{2} me 2x^{2}, ka 5x^{2}.
y=\left(\left(-x\right)x^{3}-9\left(-x\right)x^{2}+5x^{3}-51x^{2}+54x\right)\left(x+6\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te \left(-x\right)x^{2}+5x^{2}-6x ki te x-9 ka whakakotahi i ngā kupu rite.
y=\left(\left(-x\right)x^{3}+9xx^{2}+5x^{3}-51x^{2}+54x\right)\left(x+6\right)
Whakareatia te -9 ki te -1, ka 9.
y=\left(\left(-x\right)x^{3}+9x^{3}+5x^{3}-51x^{2}+54x\right)\left(x+6\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
y=\left(\left(-x\right)x^{3}+14x^{3}-51x^{2}+54x\right)\left(x+6\right)
Pahekotia te 9x^{3} me 5x^{3}, ka 14x^{3}.
y=\left(-x\right)x^{4}+6\left(-x\right)x^{3}+14x^{4}+33x^{3}-252x^{2}+324x
Whakamahia te āhuatanga tuaritanga hei whakarea te \left(-x\right)x^{3}+14x^{3}-51x^{2}+54x ki te x+6 ka whakakotahi i ngā kupu rite.
y=-x^{5}+6\left(-1\right)xx^{3}+14x^{4}+33x^{3}-252x^{2}+324x
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 4 kia riro ai te 5.
y=-x^{5}+6\left(-1\right)x^{4}+14x^{4}+33x^{3}-252x^{2}+324x
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
y=-x^{5}-6x^{4}+14x^{4}+33x^{3}-252x^{2}+324x
Whakareatia te 6 ki te -1, ka -6.
y=-x^{5}+8x^{4}+33x^{3}-252x^{2}+324x
Pahekotia te -6x^{4} me 14x^{4}, ka 8x^{4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}