Whakaoti mō y, x
x=0
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+2x=0
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y-\frac{x}{2}=0
Whakaarohia te whārite tuarua. Tangohia te \frac{x}{2} mai i ngā taha e rua.
2y-x=0
Whakareatia ngā taha e rua o te whārite ki te 2.
y+2x=0,2y-x=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+2x=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-2x
Me tango 2x mai i ngā taha e rua o te whārite.
2\left(-2\right)x-x=0
Whakakapia te -2x mō te y ki tērā atu whārite, 2y-x=0.
-4x-x=0
Whakareatia 2 ki te -2x.
-5x=0
Tāpiri -4x ki te -x.
x=0
Whakawehea ngā taha e rua ki te -5.
y=0
Whakaurua te 0 mō x ki y=-2x. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=0,x=0
Kua oti te pūnaha te whakatau.
y+2x=0
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y-\frac{x}{2}=0
Whakaarohia te whārite tuarua. Tangohia te \frac{x}{2} mai i ngā taha e rua.
2y-x=0
Whakareatia ngā taha e rua o te whārite ki te 2.
y+2x=0,2y-x=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\2&-1\end{matrix}\right))\left(\begin{matrix}1&2\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\times 2}&-\frac{2}{-1-2\times 2}\\-\frac{2}{-1-2\times 2}&\frac{1}{-1-2\times 2}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa.
y=0,x=0
Tangohia ngā huānga poukapa y me x.
y+2x=0
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y-\frac{x}{2}=0
Whakaarohia te whārite tuarua. Tangohia te \frac{x}{2} mai i ngā taha e rua.
2y-x=0
Whakareatia ngā taha e rua o te whārite ki te 2.
y+2x=0,2y-x=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2y+2\times 2x=0,2y-x=0
Kia ōrite ai a y me 2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2y+4x=0,2y-x=0
Whakarūnātia.
2y-2y+4x+x=0
Me tango 2y-x=0 mai i 2y+4x=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4x+x=0
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5x=0
Tāpiri 4x ki te x.
x=0
Whakawehea ngā taha e rua ki te 5.
2y=0
Whakaurua te 0 mō x ki 2y-x=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=0
Whakawehea ngā taha e rua ki te 2.
y=0,x=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}