Whakaoti mō y
y = \frac{\sqrt{65} + 1}{2} \approx 4.531128874
y=\frac{1-\sqrt{65}}{2}\approx -3.531128874
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=y^{2}-16
Whakaarohia te \left(y-4\right)\left(y+4\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 4.
y-y^{2}=-16
Tangohia te y^{2} mai i ngā taha e rua.
y-y^{2}+16=0
Me tāpiri te 16 ki ngā taha e rua.
-y^{2}+y+16=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1 mō b, me 16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\left(-1\right)\times 16}}{2\left(-1\right)}
Pūrua 1.
y=\frac{-1±\sqrt{1+4\times 16}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
y=\frac{-1±\sqrt{1+64}}{2\left(-1\right)}
Whakareatia 4 ki te 16.
y=\frac{-1±\sqrt{65}}{2\left(-1\right)}
Tāpiri 1 ki te 64.
y=\frac{-1±\sqrt{65}}{-2}
Whakareatia 2 ki te -1.
y=\frac{\sqrt{65}-1}{-2}
Nā, me whakaoti te whārite y=\frac{-1±\sqrt{65}}{-2} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{65}.
y=\frac{1-\sqrt{65}}{2}
Whakawehe -1+\sqrt{65} ki te -2.
y=\frac{-\sqrt{65}-1}{-2}
Nā, me whakaoti te whārite y=\frac{-1±\sqrt{65}}{-2} ina he tango te ±. Tango \sqrt{65} mai i -1.
y=\frac{\sqrt{65}+1}{2}
Whakawehe -1-\sqrt{65} ki te -2.
y=\frac{1-\sqrt{65}}{2} y=\frac{\sqrt{65}+1}{2}
Kua oti te whārite te whakatau.
y=y^{2}-16
Whakaarohia te \left(y-4\right)\left(y+4\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 4.
y-y^{2}=-16
Tangohia te y^{2} mai i ngā taha e rua.
-y^{2}+y=-16
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-y^{2}+y}{-1}=-\frac{16}{-1}
Whakawehea ngā taha e rua ki te -1.
y^{2}+\frac{1}{-1}y=-\frac{16}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
y^{2}-y=-\frac{16}{-1}
Whakawehe 1 ki te -1.
y^{2}-y=16
Whakawehe -16 ki te -1.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=16+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-y+\frac{1}{4}=16+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-y+\frac{1}{4}=\frac{65}{4}
Tāpiri 16 ki te \frac{1}{4}.
\left(y-\frac{1}{2}\right)^{2}=\frac{65}{4}
Tauwehea y^{2}-y+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{65}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{1}{2}=\frac{\sqrt{65}}{2} y-\frac{1}{2}=-\frac{\sqrt{65}}{2}
Whakarūnātia.
y=\frac{\sqrt{65}+1}{2} y=\frac{1-\sqrt{65}}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}