Whakaoti mō a
\left\{\begin{matrix}a=x-\frac{y}{\sqrt{x}}\text{, }&x>0\\a\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=x\sqrt{x}-a\sqrt{x}
Whakamahia te āhuatanga tohatoha hei whakarea te x-a ki te \sqrt{x}.
x\sqrt{x}-a\sqrt{x}=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-a\sqrt{x}=y-x\sqrt{x}
Tangohia te x\sqrt{x} mai i ngā taha e rua.
-\sqrt{x}a=-\sqrt{x}x+y
Whakaraupapatia anō ngā kīanga tau.
\left(-\sqrt{x}\right)a=-\sqrt{x}x+y
He hanga arowhānui tō te whārite.
\frac{\left(-\sqrt{x}\right)a}{-\sqrt{x}}=\frac{y-x^{\frac{3}{2}}}{-\sqrt{x}}
Whakawehea ngā taha e rua ki te -\sqrt{x}.
a=\frac{y-x^{\frac{3}{2}}}{-\sqrt{x}}
Mā te whakawehe ki te -\sqrt{x} ka wetekia te whakareanga ki te -\sqrt{x}.
a=x-\frac{y}{\sqrt{x}}
Whakawehe -x^{\frac{3}{2}}+y ki te -\sqrt{x}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}