Whakaoti mō t
t=-\frac{1-2y}{3y-4}
y\neq \frac{4}{3}
Whakaoti mō y
y=-\frac{1-4t}{3t-2}
t\neq \frac{2}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=4t\left(3t-2\right)^{-1}-\left(3t-2\right)^{-1}
Whakamahia te āhuatanga tohatoha hei whakarea te 4t-1 ki te \left(3t-2\right)^{-1}.
4t\left(3t-2\right)^{-1}-\left(3t-2\right)^{-1}=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4\times \frac{1}{3t-2}t-\frac{1}{3t-2}=y
Whakaraupapatia anō ngā kīanga tau.
4\times 1t-1=y\left(3t-2\right)
Tē taea kia ōrite te tāupe t ki \frac{2}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3t-2.
4t-1=y\left(3t-2\right)
Mahia ngā whakarea.
4t-1=3yt-2y
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te 3t-2.
4t-1-3yt=-2y
Tangohia te 3yt mai i ngā taha e rua.
4t-3yt=-2y+1
Me tāpiri te 1 ki ngā taha e rua.
\left(4-3y\right)t=-2y+1
Pahekotia ngā kīanga tau katoa e whai ana i te t.
\left(4-3y\right)t=1-2y
He hanga arowhānui tō te whārite.
\frac{\left(4-3y\right)t}{4-3y}=\frac{1-2y}{4-3y}
Whakawehea ngā taha e rua ki te 4-3y.
t=\frac{1-2y}{4-3y}
Mā te whakawehe ki te 4-3y ka wetekia te whakareanga ki te 4-3y.
t=\frac{1-2y}{4-3y}\text{, }t\neq \frac{2}{3}
Tē taea kia ōrite te tāupe t ki \frac{2}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}