Whakaoti mō x (complex solution)
x=\frac{-\sqrt[4]{y}+7}{3}
x=\frac{-i\sqrt[4]{y}+7}{3}
x=\frac{\sqrt[4]{y}+7}{3}
x=\frac{i\sqrt[4]{y}+7}{3}
Whakaoti mō x
x=\frac{-\sqrt[4]{y}+7}{3}
x=\frac{\sqrt[4]{y}+7}{3}\text{, }y\geq 0
Whakaoti mō y
y=\left(3x-7\right)^{4}
Graph
Pātaitai
Algebra
y = ( 3 x - 7 ) ^ { 4 }
Tohaina
Kua tāruatia ki te papatopenga
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}