Whakaoti mō x
x=\left(1-y\right)^{2}+1
-\left(1-y\right)\geq 0
Whakaoti mō x (complex solution)
x=\left(1-y\right)^{2}+1
y=1\text{ or }arg(1-y)\geq \pi
Whakaoti mō y
y=\sqrt{x-1}+1
x\geq 1
Graph
Pātaitai
Algebra
y = \sqrt { x - 1 } + 1
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x-1}+1=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\sqrt{x-1}=y-1
Tangohia te 1 mai i ngā taha e rua.
x-1=\left(y-1\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x-1-\left(-1\right)=\left(y-1\right)^{2}-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=\left(y-1\right)^{2}-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
x=\left(y-1\right)^{2}+1
Tango -1 mai i \left(y-1\right)^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}