y = \sqrt { 25 - 16 } + \sqrt[ 16 ] { 0 } - \sqrt[ 3 ] { 27 } ? ( 0
Whakaoti mō y
y=3
Tautapa y
y≔3
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=\sqrt{9}+\sqrt[16]{0}-\sqrt[3]{27}\times 0
Tangohia te 16 i te 25, ka 9.
y=3+\sqrt[16]{0}-\sqrt[3]{27}\times 0
Tātaitia te pūtakerua o 9 kia tae ki 3.
y=3+0-\sqrt[3]{27}\times 0
Tātaitia te \sqrt[16]{0} kia tae ki 0.
y=3-\sqrt[3]{27}\times 0
Tāpirihia te 3 ki te 0, ka 3.
y=3-3\times 0
Tātaitia te \sqrt[3]{27} kia tae ki 3.
y=3-0
Whakareatia te 3 ki te 0, ka 0.
y=3
Tangohia te 0 i te 3, ka 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}