Whakaoti mō y, x
x=-26
y=-44
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-\frac{4}{3}x=-\frac{28}{3}
Whakaarohia te whārite tuatahi. Tangohia te \frac{4}{3}x mai i ngā taha e rua.
y-2x=8
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-\frac{4}{3}x=-\frac{28}{3},y-2x=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-\frac{4}{3}x=-\frac{28}{3}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=\frac{4}{3}x-\frac{28}{3}
Me tāpiri \frac{4x}{3} ki ngā taha e rua o te whārite.
\frac{4}{3}x-\frac{28}{3}-2x=8
Whakakapia te \frac{-28+4x}{3} mō te y ki tērā atu whārite, y-2x=8.
-\frac{2}{3}x-\frac{28}{3}=8
Tāpiri \frac{4x}{3} ki te -2x.
-\frac{2}{3}x=\frac{52}{3}
Me tāpiri \frac{28}{3} ki ngā taha e rua o te whārite.
x=-26
Whakawehea ngā taha e rua o te whārite ki te -\frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{4}{3}\left(-26\right)-\frac{28}{3}
Whakaurua te -26 mō x ki y=\frac{4}{3}x-\frac{28}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{-104-28}{3}
Whakareatia \frac{4}{3} ki te -26.
y=-44
Tāpiri -\frac{28}{3} ki te -\frac{104}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=-44,x=-26
Kua oti te pūnaha te whakatau.
y-\frac{4}{3}x=-\frac{28}{3}
Whakaarohia te whārite tuatahi. Tangohia te \frac{4}{3}x mai i ngā taha e rua.
y-2x=8
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-\frac{4}{3}x=-\frac{28}{3},y-2x=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-\frac{4}{3}\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{28}{3}\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-\frac{4}{3}\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-\frac{4}{3}\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{4}{3}\\1&-2\end{matrix}\right))\left(\begin{matrix}-\frac{28}{3}\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-\frac{4}{3}\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{4}{3}\\1&-2\end{matrix}\right))\left(\begin{matrix}-\frac{28}{3}\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{4}{3}\\1&-2\end{matrix}\right))\left(\begin{matrix}-\frac{28}{3}\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-\frac{4}{3}\right)}&-\frac{-\frac{4}{3}}{-2-\left(-\frac{4}{3}\right)}\\-\frac{1}{-2-\left(-\frac{4}{3}\right)}&\frac{1}{-2-\left(-\frac{4}{3}\right)}\end{matrix}\right)\left(\begin{matrix}-\frac{28}{3}\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3&-2\\\frac{3}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}-\frac{28}{3}\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\left(-\frac{28}{3}\right)-2\times 8\\\frac{3}{2}\left(-\frac{28}{3}\right)-\frac{3}{2}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-44\\-26\end{matrix}\right)
Mahia ngā tātaitanga.
y=-44,x=-26
Tangohia ngā huānga poukapa y me x.
y-\frac{4}{3}x=-\frac{28}{3}
Whakaarohia te whārite tuatahi. Tangohia te \frac{4}{3}x mai i ngā taha e rua.
y-2x=8
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-\frac{4}{3}x=-\frac{28}{3},y-2x=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-\frac{4}{3}x+2x=-\frac{28}{3}-8
Me tango y-2x=8 mai i y-\frac{4}{3}x=-\frac{28}{3} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-\frac{4}{3}x+2x=-\frac{28}{3}-8
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{2}{3}x=-\frac{28}{3}-8
Tāpiri -\frac{4x}{3} ki te 2x.
\frac{2}{3}x=-\frac{52}{3}
Tāpiri -\frac{28}{3} ki te -8.
x=-26
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y-2\left(-26\right)=8
Whakaurua te -26 mō x ki y-2x=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+52=8
Whakareatia -2 ki te -26.
y=-44
Me tango 52 mai i ngā taha e rua o te whārite.
y=-44,x=-26
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}