Whakaoti mō y (complex solution)
\left\{\begin{matrix}y=0\text{, }&x\neq 0\\y\in \mathrm{C}\text{, }&x=\frac{3}{2}\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}\\x=\frac{3}{2}=1.5\text{, }&\text{unconditionally}\\x\neq 0\text{, }&y=0\end{matrix}\right.
Whakaoti mō y
\left\{\begin{matrix}y=0\text{, }&x\neq 0\\y\in \mathrm{R}\text{, }&x=\frac{3}{2}\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=\frac{3y}{2x}
Tuhia te \frac{3}{2x}y hei hautanga kotahi.
y-\frac{3y}{2x}=0
Tangohia te \frac{3y}{2x} mai i ngā taha e rua.
\frac{y\times 2x}{2x}-\frac{3y}{2x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{2x}{2x}.
\frac{y\times 2x-3y}{2x}=0
Tā te mea he rite te tauraro o \frac{y\times 2x}{2x} me \frac{3y}{2x}, me tango rāua mā te tango i ō raua taurunga.
y\times 2x-3y=0
Whakareatia ngā taha e rua o te whārite ki te 2x.
\left(2x-3\right)y=0
Pahekotia ngā kīanga tau katoa e whai ana i te y.
y=0
Whakawehe 0 ki te 2x-3.
y\times 2x=3y
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x.
2xy=3y
Whakaraupapatia anō ngā kīanga tau.
2yx=3y
He hanga arowhānui tō te whārite.
\frac{2yx}{2y}=\frac{3y}{2y}
Whakawehea ngā taha e rua ki te 2y.
x=\frac{3y}{2y}
Mā te whakawehe ki te 2y ka wetekia te whakareanga ki te 2y.
x=\frac{3}{2}
Whakawehe 3y ki te 2y.
y=\frac{3y}{2x}
Tuhia te \frac{3}{2x}y hei hautanga kotahi.
y-\frac{3y}{2x}=0
Tangohia te \frac{3y}{2x} mai i ngā taha e rua.
\frac{y\times 2x}{2x}-\frac{3y}{2x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia y ki te \frac{2x}{2x}.
\frac{y\times 2x-3y}{2x}=0
Tā te mea he rite te tauraro o \frac{y\times 2x}{2x} me \frac{3y}{2x}, me tango rāua mā te tango i ō raua taurunga.
y\times 2x-3y=0
Whakareatia ngā taha e rua o te whārite ki te 2x.
\left(2x-3\right)y=0
Pahekotia ngā kīanga tau katoa e whai ana i te y.
y=0
Whakawehe 0 ki te 2x-3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}