Whakaoti mō u
u=\frac{3y}{y+2}
y\neq -2
Whakaoti mō y
y=\frac{2u}{3-u}
u\neq 3
Graph
Tohaina
Kua tāruatia ki te papatopenga
y\left(-u+3\right)=2u
Tē taea kia ōrite te tāupe u ki 3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -u+3.
-yu+3y=2u
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te -u+3.
-yu+3y-2u=0
Tangohia te 2u mai i ngā taha e rua.
-yu-2u=-3y
Tangohia te 3y mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(-y-2\right)u=-3y
Pahekotia ngā kīanga tau katoa e whai ana i te u.
\frac{\left(-y-2\right)u}{-y-2}=-\frac{3y}{-y-2}
Whakawehea ngā taha e rua ki te -y-2.
u=-\frac{3y}{-y-2}
Mā te whakawehe ki te -y-2 ka wetekia te whakareanga ki te -y-2.
u=\frac{3y}{y+2}
Whakawehe -3y ki te -y-2.
u=\frac{3y}{y+2}\text{, }u\neq 3
Tē taea kia ōrite te tāupe u ki 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}