Whakaoti mō y, x
x=18
y=6
Graph
Pātaitai
Simultaneous Equation
5 raruraru e ōrite ana ki:
y = \frac { 1 } { 3 } x ; \quad y = 60 - 3 x
Tohaina
Kua tāruatia ki te papatopenga
y-\frac{1}{3}x=0
Whakaarohia te whārite tuatahi. Tangohia te \frac{1}{3}x mai i ngā taha e rua.
y+3x=60
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
y-\frac{1}{3}x=0,y+3x=60
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-\frac{1}{3}x=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=\frac{1}{3}x
Me tāpiri \frac{x}{3} ki ngā taha e rua o te whārite.
\frac{1}{3}x+3x=60
Whakakapia te \frac{x}{3} mō te y ki tērā atu whārite, y+3x=60.
\frac{10}{3}x=60
Tāpiri \frac{x}{3} ki te 3x.
x=18
Whakawehea ngā taha e rua o te whārite ki te \frac{10}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{1}{3}\times 18
Whakaurua te 18 mō x ki y=\frac{1}{3}x. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=6
Whakareatia \frac{1}{3} ki te 18.
y=6,x=18
Kua oti te pūnaha te whakatau.
y-\frac{1}{3}x=0
Whakaarohia te whārite tuatahi. Tangohia te \frac{1}{3}x mai i ngā taha e rua.
y+3x=60
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
y-\frac{1}{3}x=0,y+3x=60
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\60\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}0\\60\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}0\\60\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}0\\60\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{3-\left(-\frac{1}{3}\right)}\\-\frac{1}{3-\left(-\frac{1}{3}\right)}&\frac{1}{3-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}0\\60\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10}&\frac{1}{10}\\-\frac{3}{10}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}0\\60\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 60\\\frac{3}{10}\times 60\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\18\end{matrix}\right)
Mahia ngā tātaitanga.
y=6,x=18
Tangohia ngā huānga poukapa y me x.
y-\frac{1}{3}x=0
Whakaarohia te whārite tuatahi. Tangohia te \frac{1}{3}x mai i ngā taha e rua.
y+3x=60
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
y-\frac{1}{3}x=0,y+3x=60
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-\frac{1}{3}x-3x=-60
Me tango y+3x=60 mai i y-\frac{1}{3}x=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-\frac{1}{3}x-3x=-60
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{10}{3}x=-60
Tāpiri -\frac{x}{3} ki te -3x.
x=18
Whakawehea ngā taha e rua o te whārite ki te -\frac{10}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y+3\times 18=60
Whakaurua te 18 mō x ki y+3x=60. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+54=60
Whakareatia 3 ki te 18.
y=6
Me tango 54 mai i ngā taha e rua o te whārite.
y=6,x=18
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}