Whakaoti mō x
x=\left(2y+9\right)\left(2y+11\right)
2y+10\geq 0
Whakaoti mō x (complex solution)
x=\left(2y+9\right)\left(2y+11\right)
y=-5\text{ or }arg(2y+10)<\pi
Whakaoti mō y (complex solution)
y=\frac{\sqrt{x+1}-10}{2}
Whakaoti mō y
y=\frac{\sqrt{x+1}-10}{2}
x\geq -1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}\sqrt{x+1}-5=y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{2}\sqrt{x+1}=y+5
Me tāpiri te 5 ki ngā taha e rua.
\frac{\frac{1}{2}\sqrt{x+1}}{\frac{1}{2}}=\frac{y+5}{\frac{1}{2}}
Me whakarea ngā taha e rua ki te 2.
\sqrt{x+1}=\frac{y+5}{\frac{1}{2}}
Mā te whakawehe ki te \frac{1}{2} ka wetekia te whakareanga ki te \frac{1}{2}.
\sqrt{x+1}=2y+10
Whakawehe y+5 ki te \frac{1}{2} mā te whakarea y+5 ki te tau huripoki o \frac{1}{2}.
x+1=4\left(y+5\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+1-1=4\left(y+5\right)^{2}-1
Me tango 1 mai i ngā taha e rua o te whārite.
x=4\left(y+5\right)^{2}-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
x=4y^{2}+40y+99
Tango 1 mai i 4\left(5+y\right)^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}