Whakaoti mō y
y=9
Tautapa y
y≔9
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=\frac{25-4^{2}+\left(\frac{1}{5}\right)^{0}}{3^{-2}+1}
Tātaihia te -5 mā te pū o 2, kia riro ko 25.
y=\frac{25-16+\left(\frac{1}{5}\right)^{0}}{3^{-2}+1}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
y=\frac{9+\left(\frac{1}{5}\right)^{0}}{3^{-2}+1}
Tangohia te 16 i te 25, ka 9.
y=\frac{9+1}{3^{-2}+1}
Tātaihia te \frac{1}{5} mā te pū o 0, kia riro ko 1.
y=\frac{10}{3^{-2}+1}
Tāpirihia te 9 ki te 1, ka 10.
y=\frac{10}{\frac{1}{9}+1}
Tātaihia te 3 mā te pū o -2, kia riro ko \frac{1}{9}.
y=\frac{10}{\frac{10}{9}}
Tāpirihia te \frac{1}{9} ki te 1, ka \frac{10}{9}.
y=10\times \frac{9}{10}
Whakawehe 10 ki te \frac{10}{9} mā te whakarea 10 ki te tau huripoki o \frac{10}{9}.
y=9
Whakareatia te 10 ki te \frac{9}{10}, ka 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}