Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2y\left(2y+4\right)=24\left(2y-\frac{1}{2}\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
4y^{2}+8y=24\left(2y-\frac{1}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2y ki te 2y+4.
4y^{2}+8y=48y+24\left(-\frac{1}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 24 ki te 2y-\frac{1}{2}.
4y^{2}+8y=48y+\frac{24\left(-1\right)}{2}
Tuhia te 24\left(-\frac{1}{2}\right) hei hautanga kotahi.
4y^{2}+8y=48y+\frac{-24}{2}
Whakareatia te 24 ki te -1, ka -24.
4y^{2}+8y=48y-12
Whakawehea te -24 ki te 2, kia riro ko -12.
4y^{2}+8y-48y=-12
Tangohia te 48y mai i ngā taha e rua.
4y^{2}-40y=-12
Pahekotia te 8y me -48y, ka -40y.
4y^{2}-40y+12=0
Me tāpiri te 12 ki ngā taha e rua.
y=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 4\times 12}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -40 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-40\right)±\sqrt{1600-4\times 4\times 12}}{2\times 4}
Pūrua -40.
y=\frac{-\left(-40\right)±\sqrt{1600-16\times 12}}{2\times 4}
Whakareatia -4 ki te 4.
y=\frac{-\left(-40\right)±\sqrt{1600-192}}{2\times 4}
Whakareatia -16 ki te 12.
y=\frac{-\left(-40\right)±\sqrt{1408}}{2\times 4}
Tāpiri 1600 ki te -192.
y=\frac{-\left(-40\right)±8\sqrt{22}}{2\times 4}
Tuhia te pūtakerua o te 1408.
y=\frac{40±8\sqrt{22}}{2\times 4}
Ko te tauaro o -40 ko 40.
y=\frac{40±8\sqrt{22}}{8}
Whakareatia 2 ki te 4.
y=\frac{8\sqrt{22}+40}{8}
Nā, me whakaoti te whārite y=\frac{40±8\sqrt{22}}{8} ina he tāpiri te ±. Tāpiri 40 ki te 8\sqrt{22}.
y=\sqrt{22}+5
Whakawehe 40+8\sqrt{22} ki te 8.
y=\frac{40-8\sqrt{22}}{8}
Nā, me whakaoti te whārite y=\frac{40±8\sqrt{22}}{8} ina he tango te ±. Tango 8\sqrt{22} mai i 40.
y=5-\sqrt{22}
Whakawehe 40-8\sqrt{22} ki te 8.
y=\sqrt{22}+5 y=5-\sqrt{22}
Kua oti te whārite te whakatau.
2y\left(2y+4\right)=24\left(2y-\frac{1}{2}\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
4y^{2}+8y=24\left(2y-\frac{1}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2y ki te 2y+4.
4y^{2}+8y=48y+24\left(-\frac{1}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 24 ki te 2y-\frac{1}{2}.
4y^{2}+8y=48y+\frac{24\left(-1\right)}{2}
Tuhia te 24\left(-\frac{1}{2}\right) hei hautanga kotahi.
4y^{2}+8y=48y+\frac{-24}{2}
Whakareatia te 24 ki te -1, ka -24.
4y^{2}+8y=48y-12
Whakawehea te -24 ki te 2, kia riro ko -12.
4y^{2}+8y-48y=-12
Tangohia te 48y mai i ngā taha e rua.
4y^{2}-40y=-12
Pahekotia te 8y me -48y, ka -40y.
\frac{4y^{2}-40y}{4}=-\frac{12}{4}
Whakawehea ngā taha e rua ki te 4.
y^{2}+\left(-\frac{40}{4}\right)y=-\frac{12}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
y^{2}-10y=-\frac{12}{4}
Whakawehe -40 ki te 4.
y^{2}-10y=-3
Whakawehe -12 ki te 4.
y^{2}-10y+\left(-5\right)^{2}=-3+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-10y+25=-3+25
Pūrua -5.
y^{2}-10y+25=22
Tāpiri -3 ki te 25.
\left(y-5\right)^{2}=22
Tauwehea y^{2}-10y+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-5\right)^{2}}=\sqrt{22}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-5=\sqrt{22} y-5=-\sqrt{22}
Whakarūnātia.
y=\sqrt{22}+5 y=5-\sqrt{22}
Me tāpiri 5 ki ngā taha e rua o te whārite.