Whakaoti mō x
x=\frac{y+12}{6}
Whakaoti mō y
y=6\left(x-2\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+6=6x-6
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x-1.
6x-6=y+6
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6x=y+6+6
Me tāpiri te 6 ki ngā taha e rua.
6x=y+12
Tāpirihia te 6 ki te 6, ka 12.
\frac{6x}{6}=\frac{y+12}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{y+12}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x=\frac{y}{6}+2
Whakawehe y+12 ki te 6.
y+6=6x-6
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x-1.
y=6x-6-6
Tangohia te 6 mai i ngā taha e rua.
y=6x-12
Tangohia te 6 i te -6, ka -12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}