Aromātai
y+15
Kimi Pārōnaki e ai ki y
1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+2+12+5+6-10
Whakareatia te 3 ki te 4, ka 12.
y+14+5+6-10
Tāpirihia te 2 ki te 12, ka 14.
y+19+6-10
Tāpirihia te 14 ki te 5, ka 19.
y+25-10
Tāpirihia te 19 ki te 6, ka 25.
y+15
Tangohia te 10 i te 25, ka 15.
\frac{\mathrm{d}}{\mathrm{d}y}(y+2+12+5+6-10)
Whakareatia te 3 ki te 4, ka 12.
\frac{\mathrm{d}}{\mathrm{d}y}(y+14+5+6-10)
Tāpirihia te 2 ki te 12, ka 14.
\frac{\mathrm{d}}{\mathrm{d}y}(y+19+6-10)
Tāpirihia te 14 ki te 5, ka 19.
\frac{\mathrm{d}}{\mathrm{d}y}(y+25-10)
Tāpirihia te 19 ki te 6, ka 25.
\frac{\mathrm{d}}{\mathrm{d}y}(y+15)
Tangohia te 10 i te 25, ka 15.
y^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
y^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}