Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

yy+6=-7y
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
y^{2}+6=-7y
Whakareatia te y ki te y, ka y^{2}.
y^{2}+6+7y=0
Me tāpiri te 7y ki ngā taha e rua.
y^{2}+7y+6=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=7 ab=6
Hei whakaoti i te whārite, whakatauwehea te y^{2}+7y+6 mā te whakamahi i te tātai y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=1 b=6
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(y+1\right)\left(y+6\right)
Me tuhi anō te kīanga whakatauwehe \left(y+a\right)\left(y+b\right) mā ngā uara i tātaihia.
y=-1 y=-6
Hei kimi otinga whārite, me whakaoti te y+1=0 me te y+6=0.
yy+6=-7y
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
y^{2}+6=-7y
Whakareatia te y ki te y, ka y^{2}.
y^{2}+6+7y=0
Me tāpiri te 7y ki ngā taha e rua.
y^{2}+7y+6=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=7 ab=1\times 6=6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei y^{2}+ay+by+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=1 b=6
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(y^{2}+y\right)+\left(6y+6\right)
Tuhia anō te y^{2}+7y+6 hei \left(y^{2}+y\right)+\left(6y+6\right).
y\left(y+1\right)+6\left(y+1\right)
Tauwehea te y i te tuatahi me te 6 i te rōpū tuarua.
\left(y+1\right)\left(y+6\right)
Whakatauwehea atu te kīanga pātahi y+1 mā te whakamahi i te āhuatanga tātai tohatoha.
y=-1 y=-6
Hei kimi otinga whārite, me whakaoti te y+1=0 me te y+6=0.
yy+6=-7y
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
y^{2}+6=-7y
Whakareatia te y ki te y, ka y^{2}.
y^{2}+6+7y=0
Me tāpiri te 7y ki ngā taha e rua.
y^{2}+7y+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-7±\sqrt{7^{2}-4\times 6}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 7 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-7±\sqrt{49-4\times 6}}{2}
Pūrua 7.
y=\frac{-7±\sqrt{49-24}}{2}
Whakareatia -4 ki te 6.
y=\frac{-7±\sqrt{25}}{2}
Tāpiri 49 ki te -24.
y=\frac{-7±5}{2}
Tuhia te pūtakerua o te 25.
y=-\frac{2}{2}
Nā, me whakaoti te whārite y=\frac{-7±5}{2} ina he tāpiri te ±. Tāpiri -7 ki te 5.
y=-1
Whakawehe -2 ki te 2.
y=-\frac{12}{2}
Nā, me whakaoti te whārite y=\frac{-7±5}{2} ina he tango te ±. Tango 5 mai i -7.
y=-6
Whakawehe -12 ki te 2.
y=-1 y=-6
Kua oti te whārite te whakatau.
yy+6=-7y
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
y^{2}+6=-7y
Whakareatia te y ki te y, ka y^{2}.
y^{2}+6+7y=0
Me tāpiri te 7y ki ngā taha e rua.
y^{2}+7y=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y^{2}+7y+\left(\frac{7}{2}\right)^{2}=-6+\left(\frac{7}{2}\right)^{2}
Whakawehea te 7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{2}. Nā, tāpiria te pūrua o te \frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+7y+\frac{49}{4}=-6+\frac{49}{4}
Pūruatia \frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}+7y+\frac{49}{4}=\frac{25}{4}
Tāpiri -6 ki te \frac{49}{4}.
\left(y+\frac{7}{2}\right)^{2}=\frac{25}{4}
Tauwehea y^{2}+7y+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{7}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+\frac{7}{2}=\frac{5}{2} y+\frac{7}{2}=-\frac{5}{2}
Whakarūnātia.
y=-1 y=-6
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.