Whakaoti mō x (complex solution)
\left\{\begin{matrix}x=-\frac{z\left(y-2\right)}{y}\text{, }&y\neq 0\\x\in \mathrm{C}\text{, }&z=0\text{ and }y=0\end{matrix}\right.
Whakaoti mō y (complex solution)
\left\{\begin{matrix}y=\frac{2z}{x+z}\text{, }&x\neq -z\\y\in \mathrm{C}\text{, }&z=0\text{ and }x=0\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}x=-\frac{z\left(y-2\right)}{y}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&z=0\text{ and }y=0\end{matrix}\right.
Whakaoti mō y
\left\{\begin{matrix}y=\frac{2z}{x+z}\text{, }&x\neq -z\\y\in \mathrm{R}\text{, }&z=0\text{ and }x=0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
xy=2z-zy
Whakamahia te āhuatanga tohatoha hei whakarea te z ki te 2-y.
yx=2z-yz
He hanga arowhānui tō te whārite.
\frac{yx}{y}=\frac{z\left(2-y\right)}{y}
Whakawehea ngā taha e rua ki te y.
x=\frac{z\left(2-y\right)}{y}
Mā te whakawehe ki te y ka wetekia te whakareanga ki te y.
xy=2z-zy
Whakamahia te āhuatanga tohatoha hei whakarea te z ki te 2-y.
xy+zy=2z
Me tāpiri te zy ki ngā taha e rua.
\left(x+z\right)y=2z
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(x+z\right)y}{x+z}=\frac{2z}{x+z}
Whakawehea ngā taha e rua ki te x+z.
y=\frac{2z}{x+z}
Mā te whakawehe ki te x+z ka wetekia te whakareanga ki te x+z.
xy=2z-zy
Whakamahia te āhuatanga tohatoha hei whakarea te z ki te 2-y.
yx=2z-yz
He hanga arowhānui tō te whārite.
\frac{yx}{y}=\frac{z\left(2-y\right)}{y}
Whakawehea ngā taha e rua ki te y.
x=\frac{z\left(2-y\right)}{y}
Mā te whakawehe ki te y ka wetekia te whakareanga ki te y.
xy=2z-zy
Whakamahia te āhuatanga tohatoha hei whakarea te z ki te 2-y.
xy+zy=2z
Me tāpiri te zy ki ngā taha e rua.
\left(x+z\right)y=2z
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(x+z\right)y}{x+z}=\frac{2z}{x+z}
Whakawehea ngā taha e rua ki te x+z.
y=\frac{2z}{x+z}
Mā te whakawehe ki te x+z ka wetekia te whakareanga ki te x+z.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}