Whakaoti mō x
x=40
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-x\times \frac{3}{20}=34
Whakahekea te hautanga \frac{15}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{17}{20}x=34
Pahekotia te x me -x\times \frac{3}{20}, ka \frac{17}{20}x.
x=34\times \frac{20}{17}
Me whakarea ngā taha e rua ki te \frac{20}{17}, te tau utu o \frac{17}{20}.
x=\frac{34\times 20}{17}
Tuhia te 34\times \frac{20}{17} hei hautanga kotahi.
x=\frac{680}{17}
Whakareatia te 34 ki te 20, ka 680.
x=40
Whakawehea te 680 ki te 17, kia riro ko 40.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}