Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-2x^{3}-15^{2}-120x-128
Whakawehea te 8 ki te 4, kia riro ko 2.
x-2x^{3}-225-120x-128
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
-119x-2x^{3}-225-128
Pahekotia te x me -120x, ka -119x.
-119x-2x^{3}-353
Tangohia te 128 i te -225, ka -353.
\frac{\mathrm{d}}{\mathrm{d}x}(x-2x^{3}-15^{2}-120x-128)
Whakawehea te 8 ki te 4, kia riro ko 2.
\frac{\mathrm{d}}{\mathrm{d}x}(x-2x^{3}-225-120x-128)
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
\frac{\mathrm{d}}{\mathrm{d}x}(-119x-2x^{3}-225-128)
Pahekotia te x me -120x, ka -119x.
\frac{\mathrm{d}}{\mathrm{d}x}(-119x-2x^{3}-353)
Tangohia te 128 i te -225, ka -353.
-119x^{1-1}+3\left(-2\right)x^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-119x^{0}+3\left(-2\right)x^{3-1}
Tango 1 mai i 1.
-119x^{0}-6x^{3-1}
Whakareatia 3 ki te -2.
-119x^{0}-6x^{2}
Tango 1 mai i 3.
-119-6x^{2}
Mō tētahi kupu t mahue te 0, t^{0}=1.