Whakaoti mō x
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-6\sqrt{x+1}=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-6\sqrt{x+1}=-10-x
Me tango x mai i ngā taha e rua o te whārite.
\left(-6\sqrt{x+1}\right)^{2}=\left(-10-x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-6\right)^{2}\left(\sqrt{x+1}\right)^{2}=\left(-10-x\right)^{2}
Whakarohaina te \left(-6\sqrt{x+1}\right)^{2}.
36\left(\sqrt{x+1}\right)^{2}=\left(-10-x\right)^{2}
Tātaihia te -6 mā te pū o 2, kia riro ko 36.
36\left(x+1\right)=\left(-10-x\right)^{2}
Tātaihia te \sqrt{x+1} mā te pū o 2, kia riro ko x+1.
36x+36=\left(-10-x\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 36 ki te x+1.
36x+36=100+20x+x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-10-x\right)^{2}.
36x+36-20x=100+x^{2}
Tangohia te 20x mai i ngā taha e rua.
16x+36=100+x^{2}
Pahekotia te 36x me -20x, ka 16x.
16x+36-x^{2}=100
Tangohia te x^{2} mai i ngā taha e rua.
16x+36-x^{2}-100=0
Tangohia te 100 mai i ngā taha e rua.
16x-64-x^{2}=0
Tangohia te 100 i te 36, ka -64.
-x^{2}+16x-64=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=16 ab=-\left(-64\right)=64
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-64. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,64 2,32 4,16 8,8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 64.
1+64=65 2+32=34 4+16=20 8+8=16
Tātaihia te tapeke mō ia takirua.
a=8 b=8
Ko te otinga te takirua ka hoatu i te tapeke 16.
\left(-x^{2}+8x\right)+\left(8x-64\right)
Tuhia anō te -x^{2}+16x-64 hei \left(-x^{2}+8x\right)+\left(8x-64\right).
-x\left(x-8\right)+8\left(x-8\right)
Tauwehea te -x i te tuatahi me te 8 i te rōpū tuarua.
\left(x-8\right)\left(-x+8\right)
Whakatauwehea atu te kīanga pātahi x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
x=8 x=8
Hei kimi otinga whārite, me whakaoti te x-8=0 me te -x+8=0.
8-6\sqrt{8+1}+10=0
Whakakapia te 8 mō te x i te whārite x-6\sqrt{x+1}+10=0.
0=0
Whakarūnātia. Ko te uara x=8 kua ngata te whārite.
8-6\sqrt{8+1}+10=0
Whakakapia te 8 mō te x i te whārite x-6\sqrt{x+1}+10=0.
0=0
Whakarūnātia. Ko te uara x=8 kua ngata te whārite.
x=8 x=8
Rārangihia ngā rongoā katoa o -6\sqrt{x+1}=-x-10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}