Whakaoti mō x
x=12\sqrt{5}+28\approx 54.83281573
x=28-12\sqrt{5}\approx 1.16718427
Graph
Tohaina
Kua tāruatia ki te papatopenga
xx+x\left(-56\right)+64=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}+x\left(-56\right)+64=0
Whakareatia te x ki te x, ka x^{2}.
x^{2}-56x+64=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}-4\times 64}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -56 mō b, me 64 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-56\right)±\sqrt{3136-4\times 64}}{2}
Pūrua -56.
x=\frac{-\left(-56\right)±\sqrt{3136-256}}{2}
Whakareatia -4 ki te 64.
x=\frac{-\left(-56\right)±\sqrt{2880}}{2}
Tāpiri 3136 ki te -256.
x=\frac{-\left(-56\right)±24\sqrt{5}}{2}
Tuhia te pūtakerua o te 2880.
x=\frac{56±24\sqrt{5}}{2}
Ko te tauaro o -56 ko 56.
x=\frac{24\sqrt{5}+56}{2}
Nā, me whakaoti te whārite x=\frac{56±24\sqrt{5}}{2} ina he tāpiri te ±. Tāpiri 56 ki te 24\sqrt{5}.
x=12\sqrt{5}+28
Whakawehe 56+24\sqrt{5} ki te 2.
x=\frac{56-24\sqrt{5}}{2}
Nā, me whakaoti te whārite x=\frac{56±24\sqrt{5}}{2} ina he tango te ±. Tango 24\sqrt{5} mai i 56.
x=28-12\sqrt{5}
Whakawehe 56-24\sqrt{5} ki te 2.
x=12\sqrt{5}+28 x=28-12\sqrt{5}
Kua oti te whārite te whakatau.
xx+x\left(-56\right)+64=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}+x\left(-56\right)+64=0
Whakareatia te x ki te x, ka x^{2}.
x^{2}+x\left(-56\right)=-64
Tangohia te 64 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-56x=-64
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-56x+\left(-28\right)^{2}=-64+\left(-28\right)^{2}
Whakawehea te -56, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -28. Nā, tāpiria te pūrua o te -28 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-56x+784=-64+784
Pūrua -28.
x^{2}-56x+784=720
Tāpiri -64 ki te 784.
\left(x-28\right)^{2}=720
Tauwehea x^{2}-56x+784. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-28\right)^{2}}=\sqrt{720}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-28=12\sqrt{5} x-28=-12\sqrt{5}
Whakarūnātia.
x=12\sqrt{5}+28 x=28-12\sqrt{5}
Me tāpiri 28 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}