Aromātai
-6y
Kimi Pārōnaki e ai ki y
-6
Tohaina
Kua tāruatia ki te papatopenga
-x-2y-3y+x-y
Pahekotia te x me -2x, ka -x.
-x-5y+x-y
Pahekotia te -2y me -3y, ka -5y.
-5y-y
Pahekotia te -x me x, ka 0.
-6y
Pahekotia te -5y me -y, ka -6y.
\frac{\mathrm{d}}{\mathrm{d}y}(-x-2y-3y+x-y)
Pahekotia te x me -2x, ka -x.
\frac{\mathrm{d}}{\mathrm{d}y}(-x-5y+x-y)
Pahekotia te -2y me -3y, ka -5y.
\frac{\mathrm{d}}{\mathrm{d}y}(-5y-y)
Pahekotia te -x me x, ka 0.
\frac{\mathrm{d}}{\mathrm{d}y}(-6y)
Pahekotia te -5y me -y, ka -6y.
-6y^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-6y^{0}
Tango 1 mai i 1.
-6
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}