Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-2\right)^{2}=\left(\sqrt{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}-4x+4=\left(\sqrt{x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4=x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x^{2}-4x+4-x=0
Tangohia te x mai i ngā taha e rua.
x^{2}-5x+4=0
Pahekotia te -4x me -x, ka -5x.
a+b=-5 ab=4
Hei whakaoti i te whārite, whakatauwehea te x^{2}-5x+4 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(x-4\right)\left(x-1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=4 x=1
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x-1=0.
4-2=\sqrt{4}
Whakakapia te 4 mō te x i te whārite x-2=\sqrt{x}.
2=2
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
1-2=\sqrt{1}
Whakakapia te 1 mō te x i te whārite x-2=\sqrt{x}.
-1=1
Whakarūnātia. Ko te uara x=1 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=4
Ko te whārite x-2=\sqrt{x} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}