Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-2\right)^{2}=\left(\sqrt{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}-4x+4=\left(\sqrt{x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4=x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x^{2}-4x+4-x=0
Tangohia te x mai i ngā taha e rua.
x^{2}-5x+4=0
Pahekotia te -4x me -x, ka -5x.
a+b=-5 ab=4
Hei whakaoti i te whārite, whakatauwehea te x^{2}-5x+4 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(x-4\right)\left(x-1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=4 x=1
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x-1=0.
4-2=\sqrt{4}
Whakakapia te 4 mō te x i te whārite x-2=\sqrt{x}.
2=2
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
1-2=\sqrt{1}
Whakakapia te 1 mō te x i te whārite x-2=\sqrt{x}.
-1=1
Whakarūnātia. Ko te uara x=1 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=4
Ko te whārite x-2=\sqrt{x} he rongoā ahurei.