Whakaoti mō x
x=\sqrt{3}+2\approx 3.732050808
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-1\right)^{2}=\left(\sqrt{2x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}-2x+1=\left(\sqrt{2x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1=2x
Tātaihia te \sqrt{2x} mā te pū o 2, kia riro ko 2x.
x^{2}-2x+1-2x=0
Tangohia te 2x mai i ngā taha e rua.
x^{2}-4x+1=0
Pahekotia te -2x me -2x, ka -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4}}{2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{12}}{2}
Tāpiri 16 ki te -4.
x=\frac{-\left(-4\right)±2\sqrt{3}}{2}
Tuhia te pūtakerua o te 12.
x=\frac{4±2\sqrt{3}}{2}
Ko te tauaro o -4 ko 4.
x=\frac{2\sqrt{3}+4}{2}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{3}}{2} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{3}.
x=\sqrt{3}+2
Whakawehe 4+2\sqrt{3} ki te 2.
x=\frac{4-2\sqrt{3}}{2}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{3}}{2} ina he tango te ±. Tango 2\sqrt{3} mai i 4.
x=2-\sqrt{3}
Whakawehe 4-2\sqrt{3} ki te 2.
x=\sqrt{3}+2 x=2-\sqrt{3}
Kua oti te whārite te whakatau.
\sqrt{3}+2-1=\sqrt{2\left(\sqrt{3}+2\right)}
Whakakapia te \sqrt{3}+2 mō te x i te whārite x-1=\sqrt{2x}.
3^{\frac{1}{2}}+1=3^{\frac{1}{2}}+1
Whakarūnātia. Ko te uara x=\sqrt{3}+2 kua ngata te whārite.
2-\sqrt{3}-1=\sqrt{2\left(2-\sqrt{3}\right)}
Whakakapia te 2-\sqrt{3} mō te x i te whārite x-1=\sqrt{2x}.
1-3^{\frac{1}{2}}=3^{\frac{1}{2}}-1
Whakarūnātia. Ko te uara x=2-\sqrt{3} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=\sqrt{3}+2
Ko te whārite x-1=\sqrt{2x} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}