Whakaoti mō x
x=6
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
x-(2x- \frac{ 3x-4 }{ 7 } ) = \frac{ 4x-27 }{ 3 } -3
Tohaina
Kua tāruatia ki te papatopenga
21x-21\left(2x-\frac{3x-4}{7}\right)=7\left(4x-27\right)-63
Me whakarea ngā taha e rua o te whārite ki te 21, arā, te tauraro pātahi he tino iti rawa te kitea o 7,3.
21x-21\left(2x-\frac{3x-4}{7}\right)=28x-189-63
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 4x-27.
21x-21\left(2x-\frac{3x-4}{7}\right)=28x-252
Tangohia te 63 i te -189, ka -252.
21x-21\left(2x-\left(\frac{3}{7}x-\frac{4}{7}\right)\right)=28x-252
Whakawehea ia wā o 3x-4 ki te 7, kia riro ko \frac{3}{7}x-\frac{4}{7}.
21x-21\left(2x-\frac{3}{7}x-\left(-\frac{4}{7}\right)\right)=28x-252
Hei kimi i te tauaro o \frac{3}{7}x-\frac{4}{7}, kimihia te tauaro o ia taurangi.
21x-21\left(2x-\frac{3}{7}x+\frac{4}{7}\right)=28x-252
Ko te tauaro o -\frac{4}{7} ko \frac{4}{7}.
21x-21\left(\frac{11}{7}x+\frac{4}{7}\right)=28x-252
Pahekotia te 2x me -\frac{3}{7}x, ka \frac{11}{7}x.
21x-21\times \frac{11}{7}x-21\times \frac{4}{7}=28x-252
Whakamahia te āhuatanga tohatoha hei whakarea te -21 ki te \frac{11}{7}x+\frac{4}{7}.
21x+\frac{-21\times 11}{7}x-21\times \frac{4}{7}=28x-252
Tuhia te -21\times \frac{11}{7} hei hautanga kotahi.
21x+\frac{-231}{7}x-21\times \frac{4}{7}=28x-252
Whakareatia te -21 ki te 11, ka -231.
21x-33x-21\times \frac{4}{7}=28x-252
Whakawehea te -231 ki te 7, kia riro ko -33.
21x-33x+\frac{-21\times 4}{7}=28x-252
Tuhia te -21\times \frac{4}{7} hei hautanga kotahi.
21x-33x+\frac{-84}{7}=28x-252
Whakareatia te -21 ki te 4, ka -84.
21x-33x-12=28x-252
Whakawehea te -84 ki te 7, kia riro ko -12.
-12x-12=28x-252
Pahekotia te 21x me -33x, ka -12x.
-12x-12-28x=-252
Tangohia te 28x mai i ngā taha e rua.
-40x-12=-252
Pahekotia te -12x me -28x, ka -40x.
-40x=-252+12
Me tāpiri te 12 ki ngā taha e rua.
-40x=-240
Tāpirihia te -252 ki te 12, ka -240.
x=\frac{-240}{-40}
Whakawehea ngā taha e rua ki te -40.
x=6
Whakawehea te -240 ki te -40, kia riro ko 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}