Whakaoti mō x
x=\frac{-2z-5}{3}
Whakaoti mō z
z=\frac{-3x-5}{2}
Tohaina
Kua tāruatia ki te papatopenga
x+2x+3z+2-z=-3
Hei kimi i te tauaro o -2x-3z-2, kimihia te tauaro o ia taurangi.
3x+3z+2-z=-3
Pahekotia te x me 2x, ka 3x.
3x+2z+2=-3
Pahekotia te 3z me -z, ka 2z.
3x+2=-3-2z
Tangohia te 2z mai i ngā taha e rua.
3x=-3-2z-2
Tangohia te 2 mai i ngā taha e rua.
3x=-5-2z
Tangohia te 2 i te -3, ka -5.
3x=-2z-5
He hanga arowhānui tō te whārite.
\frac{3x}{3}=\frac{-2z-5}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{-2z-5}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x+2x+3z+2-z=-3
Hei kimi i te tauaro o -2x-3z-2, kimihia te tauaro o ia taurangi.
3x+3z+2-z=-3
Pahekotia te x me 2x, ka 3x.
3x+2z+2=-3
Pahekotia te 3z me -z, ka 2z.
2z+2=-3-3x
Tangohia te 3x mai i ngā taha e rua.
2z=-3-3x-2
Tangohia te 2 mai i ngā taha e rua.
2z=-5-3x
Tangohia te 2 i te -3, ka -5.
2z=-3x-5
He hanga arowhānui tō te whārite.
\frac{2z}{2}=\frac{-3x-5}{2}
Whakawehea ngā taha e rua ki te 2.
z=\frac{-3x-5}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}