Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\sqrt{x^{2}-2x}=-x
Me tango x mai i ngā taha e rua o te whārite.
\sqrt{x^{2}-2x}=x
Me whakakore te -1 ki ngā taha e rua.
\left(\sqrt{x^{2}-2x}\right)^{2}=x^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}-2x=x^{2}
Tātaihia te \sqrt{x^{2}-2x} mā te pū o 2, kia riro ko x^{2}-2x.
x^{2}-2x-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-2x=0
Pahekotia te x^{2} me -x^{2}, ka 0.
x=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te -2 e ōrite ki 0, me ōrite pū te x ki 0.
0-\sqrt{0^{2}-2\times 0}=0
Whakakapia te 0 mō te x i te whārite x-\sqrt{x^{2}-2x}=0.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
x=0
Ko te whārite \sqrt{x^{2}-2x}=x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}