Whakaoti mō x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-4\left(-1-\frac{15}{2}-x\right)=2x+6
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
6x-4\left(-\frac{2}{2}-\frac{15}{2}-x\right)=2x+6
Me tahuri te -1 ki te hautau -\frac{2}{2}.
6x-4\left(\frac{-2-15}{2}-x\right)=2x+6
Tā te mea he rite te tauraro o -\frac{2}{2} me \frac{15}{2}, me tango rāua mā te tango i ō raua taurunga.
6x-4\left(-\frac{17}{2}-x\right)=2x+6
Tangohia te 15 i te -2, ka -17.
6x-4\left(-\frac{17}{2}\right)+4x=2x+6
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te -\frac{17}{2}-x.
6x+\frac{-4\left(-17\right)}{2}+4x=2x+6
Tuhia te -4\left(-\frac{17}{2}\right) hei hautanga kotahi.
6x+\frac{68}{2}+4x=2x+6
Whakareatia te -4 ki te -17, ka 68.
6x+34+4x=2x+6
Whakawehea te 68 ki te 2, kia riro ko 34.
10x+34=2x+6
Pahekotia te 6x me 4x, ka 10x.
10x+34-2x=6
Tangohia te 2x mai i ngā taha e rua.
8x+34=6
Pahekotia te 10x me -2x, ka 8x.
8x=6-34
Tangohia te 34 mai i ngā taha e rua.
8x=-28
Tangohia te 34 i te 6, ka -28.
x=\frac{-28}{8}
Whakawehea ngā taha e rua ki te 8.
x=-\frac{7}{2}
Whakahekea te hautanga \frac{-28}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}