Whakaoti mō x (complex solution)
x=3\sqrt{2}+\sqrt{47}i\approx 4.242640687+6.8556546i
x=-\sqrt{47}i+3\sqrt{2}\approx 4.242640687-6.8556546i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-6x\sqrt{2}+65=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-6\sqrt{2}.
x^{2}+\left(-6\sqrt{2}\right)x+65=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\sqrt{2}\right)±\sqrt{\left(-6\sqrt{2}\right)^{2}-4\times 65}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -6\sqrt{2} mō b, me 65 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\sqrt{2}\right)±\sqrt{72-4\times 65}}{2}
Pūrua -6\sqrt{2}.
x=\frac{-\left(-6\sqrt{2}\right)±\sqrt{72-260}}{2}
Whakareatia -4 ki te 65.
x=\frac{-\left(-6\sqrt{2}\right)±\sqrt{-188}}{2}
Tāpiri 72 ki te -260.
x=\frac{-\left(-6\sqrt{2}\right)±2\sqrt{47}i}{2}
Tuhia te pūtakerua o te -188.
x=\frac{6\sqrt{2}±2\sqrt{47}i}{2}
Ko te tauaro o -6\sqrt{2} ko 6\sqrt{2}.
x=\frac{6\sqrt{2}+2\sqrt{47}i}{2}
Nā, me whakaoti te whārite x=\frac{6\sqrt{2}±2\sqrt{47}i}{2} ina he tāpiri te ±. Tāpiri 6\sqrt{2} ki te 2i\sqrt{47}.
x=3\sqrt{2}+\sqrt{47}i
Whakawehe 6\sqrt{2}+2i\sqrt{47} ki te 2.
x=\frac{-2\sqrt{47}i+6\sqrt{2}}{2}
Nā, me whakaoti te whārite x=\frac{6\sqrt{2}±2\sqrt{47}i}{2} ina he tango te ±. Tango 2i\sqrt{47} mai i 6\sqrt{2}.
x=-\sqrt{47}i+3\sqrt{2}
Whakawehe 6\sqrt{2}-2i\sqrt{47} ki te 2.
x=3\sqrt{2}+\sqrt{47}i x=-\sqrt{47}i+3\sqrt{2}
Kua oti te whārite te whakatau.
x^{2}-6x\sqrt{2}+65=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-6\sqrt{2}.
x^{2}-6x\sqrt{2}=-65
Tangohia te 65 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}+\left(-6\sqrt{2}\right)x=-65
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+\left(-6\sqrt{2}\right)x+\left(-3\sqrt{2}\right)^{2}=-65+\left(-3\sqrt{2}\right)^{2}
Whakawehea te -6\sqrt{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3\sqrt{2}. Nā, tāpiria te pūrua o te -3\sqrt{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\left(-6\sqrt{2}\right)x+18=-65+18
Pūrua -3\sqrt{2}.
x^{2}+\left(-6\sqrt{2}\right)x+18=-47
Tāpiri -65 ki te 18.
\left(x-3\sqrt{2}\right)^{2}=-47
Tauwehea x^{2}+\left(-6\sqrt{2}\right)x+18. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\sqrt{2}\right)^{2}}=\sqrt{-47}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3\sqrt{2}=\sqrt{47}i x-3\sqrt{2}=-\sqrt{47}i
Whakarūnātia.
x=3\sqrt{2}+\sqrt{47}i x=-\sqrt{47}i+3\sqrt{2}
Me tāpiri 3\sqrt{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}