Whakaoti mō x
x=3
x=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+4x-3\left(x+4\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+4.
x^{2}+4x-3x-12=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+4.
x^{2}+x-12=0
Pahekotia te 4x me -3x, ka x.
a+b=1 ab=-12
Hei whakaoti i te whārite, whakatauwehea te x^{2}+x-12 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,12 -2,6 -3,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
-1+12=11 -2+6=4 -3+4=1
Tātaihia te tapeke mō ia takirua.
a=-3 b=4
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(x-3\right)\left(x+4\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=3 x=-4
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+4=0.
x^{2}+4x-3\left(x+4\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+4.
x^{2}+4x-3x-12=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+4.
x^{2}+x-12=0
Pahekotia te 4x me -3x, ka x.
a+b=1 ab=1\left(-12\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,12 -2,6 -3,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
-1+12=11 -2+6=4 -3+4=1
Tātaihia te tapeke mō ia takirua.
a=-3 b=4
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(x^{2}-3x\right)+\left(4x-12\right)
Tuhia anō te x^{2}+x-12 hei \left(x^{2}-3x\right)+\left(4x-12\right).
x\left(x-3\right)+4\left(x-3\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-3\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-4
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+4=0.
x^{2}+4x-3\left(x+4\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+4.
x^{2}+4x-3x-12=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+4.
x^{2}+x-12=0
Pahekotia te 4x me -3x, ka x.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 1 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
Pūrua 1.
x=\frac{-1±\sqrt{1+48}}{2}
Whakareatia -4 ki te -12.
x=\frac{-1±\sqrt{49}}{2}
Tāpiri 1 ki te 48.
x=\frac{-1±7}{2}
Tuhia te pūtakerua o te 49.
x=\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{-1±7}{2} ina he tāpiri te ±. Tāpiri -1 ki te 7.
x=3
Whakawehe 6 ki te 2.
x=-\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-1±7}{2} ina he tango te ±. Tango 7 mai i -1.
x=-4
Whakawehe -8 ki te 2.
x=3 x=-4
Kua oti te whārite te whakatau.
x^{2}+4x-3\left(x+4\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+4.
x^{2}+4x-3x-12=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+4.
x^{2}+x-12=0
Pahekotia te 4x me -3x, ka x.
x^{2}+x=12
Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
Tāpiri 12 ki te \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
Whakarūnātia.
x=3 x=-4
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}