Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{3}-x^{2}-5x-2=0
Whakarea ka paheko i ngā kīanga tau ōrite.
±1,±2,±\frac{1}{2}
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -2, ā, ka wehea e q te whakarea arahanga 2. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
2x^{2}-3x-2=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 2x^{3}-x^{2}-5x-2 ki te x+1, kia riro ko 2x^{2}-3x-2. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 2 mō te a, te -3 mō te b, me te -2 mō te c i te ture pūrua.
x=\frac{3±5}{4}
Mahia ngā tātaitai.
x=-\frac{1}{2} x=2
Whakaotia te whārite 2x^{2}-3x-2=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-1 x=-\frac{1}{2} x=2
Rārangitia ngā otinga katoa i kitea.