Whakaoti mō x
x=12
x=20
Graph
Tohaina
Kua tāruatia ki te papatopenga
16x-0.5x^{2}-120=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 16-0.5x.
-0.5x^{2}+16x-120=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-16±\sqrt{16^{2}-4\left(-0.5\right)\left(-120\right)}}{2\left(-0.5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -0.5 mō a, 16 mō b, me -120 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-0.5\right)\left(-120\right)}}{2\left(-0.5\right)}
Pūrua 16.
x=\frac{-16±\sqrt{256+2\left(-120\right)}}{2\left(-0.5\right)}
Whakareatia -4 ki te -0.5.
x=\frac{-16±\sqrt{256-240}}{2\left(-0.5\right)}
Whakareatia 2 ki te -120.
x=\frac{-16±\sqrt{16}}{2\left(-0.5\right)}
Tāpiri 256 ki te -240.
x=\frac{-16±4}{2\left(-0.5\right)}
Tuhia te pūtakerua o te 16.
x=\frac{-16±4}{-1}
Whakareatia 2 ki te -0.5.
x=-\frac{12}{-1}
Nā, me whakaoti te whārite x=\frac{-16±4}{-1} ina he tāpiri te ±. Tāpiri -16 ki te 4.
x=12
Whakawehe -12 ki te -1.
x=-\frac{20}{-1}
Nā, me whakaoti te whārite x=\frac{-16±4}{-1} ina he tango te ±. Tango 4 mai i -16.
x=20
Whakawehe -20 ki te -1.
x=12 x=20
Kua oti te whārite te whakatau.
16x-0.5x^{2}-120=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 16-0.5x.
16x-0.5x^{2}=120
Me tāpiri te 120 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-0.5x^{2}+16x=120
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-0.5x^{2}+16x}{-0.5}=\frac{120}{-0.5}
Me whakarea ngā taha e rua ki te -2.
x^{2}+\frac{16}{-0.5}x=\frac{120}{-0.5}
Mā te whakawehe ki te -0.5 ka wetekia te whakareanga ki te -0.5.
x^{2}-32x=\frac{120}{-0.5}
Whakawehe 16 ki te -0.5 mā te whakarea 16 ki te tau huripoki o -0.5.
x^{2}-32x=-240
Whakawehe 120 ki te -0.5 mā te whakarea 120 ki te tau huripoki o -0.5.
x^{2}-32x+\left(-16\right)^{2}=-240+\left(-16\right)^{2}
Whakawehea te -32, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -16. Nā, tāpiria te pūrua o te -16 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-32x+256=-240+256
Pūrua -16.
x^{2}-32x+256=16
Tāpiri -240 ki te 256.
\left(x-16\right)^{2}=16
Tauwehea x^{2}-32x+256. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-16\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-16=4 x-16=-4
Whakarūnātia.
x=20 x=12
Me tāpiri 16 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}