Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x\left(-\frac{11x}{5}\right)+25\left(-\frac{11x}{5}\right)=110
Whakareatia ngā taha e rua o te whārite ki te 5.
\frac{-5\times 11x}{5}x+25\left(-\frac{11x}{5}\right)=110
Tuhia te 5\left(-\frac{11x}{5}\right) hei hautanga kotahi.
-11xx+25\left(-\frac{11x}{5}\right)=110
Me whakakore te 5 me te 5.
-11xx-5\times 11x=110
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 25 me te 5.
-11xx-55x=110
Whakareatia te -1 ki te 11, ka -11. Whakareatia te -5 ki te 11, ka -55.
-11x^{2}-55x=110
Whakareatia te x ki te x, ka x^{2}.
-11x^{2}-55x-110=0
Tangohia te 110 mai i ngā taha e rua.
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\left(-11\right)\left(-110\right)}}{2\left(-11\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -11 mō a, -55 mō b, me -110 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-55\right)±\sqrt{3025-4\left(-11\right)\left(-110\right)}}{2\left(-11\right)}
Pūrua -55.
x=\frac{-\left(-55\right)±\sqrt{3025+44\left(-110\right)}}{2\left(-11\right)}
Whakareatia -4 ki te -11.
x=\frac{-\left(-55\right)±\sqrt{3025-4840}}{2\left(-11\right)}
Whakareatia 44 ki te -110.
x=\frac{-\left(-55\right)±\sqrt{-1815}}{2\left(-11\right)}
Tāpiri 3025 ki te -4840.
x=\frac{-\left(-55\right)±11\sqrt{15}i}{2\left(-11\right)}
Tuhia te pūtakerua o te -1815.
x=\frac{55±11\sqrt{15}i}{2\left(-11\right)}
Ko te tauaro o -55 ko 55.
x=\frac{55±11\sqrt{15}i}{-22}
Whakareatia 2 ki te -11.
x=\frac{55+11\sqrt{15}i}{-22}
Nā, me whakaoti te whārite x=\frac{55±11\sqrt{15}i}{-22} ina he tāpiri te ±. Tāpiri 55 ki te 11i\sqrt{15}.
x=\frac{-\sqrt{15}i-5}{2}
Whakawehe 55+11i\sqrt{15} ki te -22.
x=\frac{-11\sqrt{15}i+55}{-22}
Nā, me whakaoti te whārite x=\frac{55±11\sqrt{15}i}{-22} ina he tango te ±. Tango 11i\sqrt{15} mai i 55.
x=\frac{-5+\sqrt{15}i}{2}
Whakawehe 55-11i\sqrt{15} ki te -22.
x=\frac{-\sqrt{15}i-5}{2} x=\frac{-5+\sqrt{15}i}{2}
Kua oti te whārite te whakatau.
5x\left(-\frac{11x}{5}\right)+25\left(-\frac{11x}{5}\right)=110
Whakareatia ngā taha e rua o te whārite ki te 5.
\frac{-5\times 11x}{5}x+25\left(-\frac{11x}{5}\right)=110
Tuhia te 5\left(-\frac{11x}{5}\right) hei hautanga kotahi.
-11xx+25\left(-\frac{11x}{5}\right)=110
Me whakakore te 5 me te 5.
-11xx-5\times 11x=110
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te 25 me te 5.
-11xx-55x=110
Whakareatia te -1 ki te 11, ka -11. Whakareatia te -5 ki te 11, ka -55.
-11x^{2}-55x=110
Whakareatia te x ki te x, ka x^{2}.
\frac{-11x^{2}-55x}{-11}=\frac{110}{-11}
Whakawehea ngā taha e rua ki te -11.
x^{2}+\left(-\frac{55}{-11}\right)x=\frac{110}{-11}
Mā te whakawehe ki te -11 ka wetekia te whakareanga ki te -11.
x^{2}+5x=\frac{110}{-11}
Whakawehe -55 ki te -11.
x^{2}+5x=-10
Whakawehe 110 ki te -11.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-10+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+5x+\frac{25}{4}=-10+\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+5x+\frac{25}{4}=-\frac{15}{4}
Tāpiri -10 ki te \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=-\frac{15}{4}
Tauwehea x^{2}+5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{15}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{2}=\frac{\sqrt{15}i}{2} x+\frac{5}{2}=-\frac{\sqrt{15}i}{2}
Whakarūnātia.
x=\frac{-5+\sqrt{15}i}{2} x=\frac{-\sqrt{15}i-5}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.