Tauwehe
\left(x-16\right)\left(x+10\right)
Aromātai
\left(x-16\right)\left(x+10\right)
Graph
Pātaitai
Polynomial
x^2-6x-160
Tohaina
Kua tāruatia ki te papatopenga
a+b=-6 ab=1\left(-160\right)=-160
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx-160. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-160 2,-80 4,-40 5,-32 8,-20 10,-16
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -160.
1-160=-159 2-80=-78 4-40=-36 5-32=-27 8-20=-12 10-16=-6
Tātaihia te tapeke mō ia takirua.
a=-16 b=10
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(x^{2}-16x\right)+\left(10x-160\right)
Tuhia anō te x^{2}-6x-160 hei \left(x^{2}-16x\right)+\left(10x-160\right).
x\left(x-16\right)+10\left(x-16\right)
Tauwehea te x i te tuatahi me te 10 i te rōpū tuarua.
\left(x-16\right)\left(x+10\right)
Whakatauwehea atu te kīanga pātahi x-16 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}-6x-160=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-160\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-160\right)}}{2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+640}}{2}
Whakareatia -4 ki te -160.
x=\frac{-\left(-6\right)±\sqrt{676}}{2}
Tāpiri 36 ki te 640.
x=\frac{-\left(-6\right)±26}{2}
Tuhia te pūtakerua o te 676.
x=\frac{6±26}{2}
Ko te tauaro o -6 ko 6.
x=\frac{32}{2}
Nā, me whakaoti te whārite x=\frac{6±26}{2} ina he tāpiri te ±. Tāpiri 6 ki te 26.
x=16
Whakawehe 32 ki te 2.
x=-\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{6±26}{2} ina he tango te ±. Tango 26 mai i 6.
x=-10
Whakawehe -20 ki te 2.
x^{2}-6x-160=\left(x-16\right)\left(x-\left(-10\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 16 mō te x_{1} me te -10 mō te x_{2}.
x^{2}-6x-160=\left(x-16\right)\left(x+10\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}