Whakaoti mō x
x = \frac{2 \sqrt{4176841} - 317}{425} \approx 8.87168059
x=\frac{-2\sqrt{4176841}-317}{425}\approx -10.363445296
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-425x^{2}=635x-39075
Tangohia te 425x^{2} mai i ngā taha e rua.
x-425x^{2}-635x=-39075
Tangohia te 635x mai i ngā taha e rua.
-634x-425x^{2}=-39075
Pahekotia te x me -635x, ka -634x.
-634x-425x^{2}+39075=0
Me tāpiri te 39075 ki ngā taha e rua.
-425x^{2}-634x+39075=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-634\right)±\sqrt{\left(-634\right)^{2}-4\left(-425\right)\times 39075}}{2\left(-425\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -425 mō a, -634 mō b, me 39075 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-634\right)±\sqrt{401956-4\left(-425\right)\times 39075}}{2\left(-425\right)}
Pūrua -634.
x=\frac{-\left(-634\right)±\sqrt{401956+1700\times 39075}}{2\left(-425\right)}
Whakareatia -4 ki te -425.
x=\frac{-\left(-634\right)±\sqrt{401956+66427500}}{2\left(-425\right)}
Whakareatia 1700 ki te 39075.
x=\frac{-\left(-634\right)±\sqrt{66829456}}{2\left(-425\right)}
Tāpiri 401956 ki te 66427500.
x=\frac{-\left(-634\right)±4\sqrt{4176841}}{2\left(-425\right)}
Tuhia te pūtakerua o te 66829456.
x=\frac{634±4\sqrt{4176841}}{2\left(-425\right)}
Ko te tauaro o -634 ko 634.
x=\frac{634±4\sqrt{4176841}}{-850}
Whakareatia 2 ki te -425.
x=\frac{4\sqrt{4176841}+634}{-850}
Nā, me whakaoti te whārite x=\frac{634±4\sqrt{4176841}}{-850} ina he tāpiri te ±. Tāpiri 634 ki te 4\sqrt{4176841}.
x=\frac{-2\sqrt{4176841}-317}{425}
Whakawehe 634+4\sqrt{4176841} ki te -850.
x=\frac{634-4\sqrt{4176841}}{-850}
Nā, me whakaoti te whārite x=\frac{634±4\sqrt{4176841}}{-850} ina he tango te ±. Tango 4\sqrt{4176841} mai i 634.
x=\frac{2\sqrt{4176841}-317}{425}
Whakawehe 634-4\sqrt{4176841} ki te -850.
x=\frac{-2\sqrt{4176841}-317}{425} x=\frac{2\sqrt{4176841}-317}{425}
Kua oti te whārite te whakatau.
x-425x^{2}=635x-39075
Tangohia te 425x^{2} mai i ngā taha e rua.
x-425x^{2}-635x=-39075
Tangohia te 635x mai i ngā taha e rua.
-634x-425x^{2}=-39075
Pahekotia te x me -635x, ka -634x.
-425x^{2}-634x=-39075
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-425x^{2}-634x}{-425}=-\frac{39075}{-425}
Whakawehea ngā taha e rua ki te -425.
x^{2}+\left(-\frac{634}{-425}\right)x=-\frac{39075}{-425}
Mā te whakawehe ki te -425 ka wetekia te whakareanga ki te -425.
x^{2}+\frac{634}{425}x=-\frac{39075}{-425}
Whakawehe -634 ki te -425.
x^{2}+\frac{634}{425}x=\frac{1563}{17}
Whakahekea te hautanga \frac{-39075}{-425} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
x^{2}+\frac{634}{425}x+\left(\frac{317}{425}\right)^{2}=\frac{1563}{17}+\left(\frac{317}{425}\right)^{2}
Whakawehea te \frac{634}{425}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{317}{425}. Nā, tāpiria te pūrua o te \frac{317}{425} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{634}{425}x+\frac{100489}{180625}=\frac{1563}{17}+\frac{100489}{180625}
Pūruatia \frac{317}{425} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{634}{425}x+\frac{100489}{180625}=\frac{16707364}{180625}
Tāpiri \frac{1563}{17} ki te \frac{100489}{180625} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{317}{425}\right)^{2}=\frac{16707364}{180625}
Tauwehea x^{2}+\frac{634}{425}x+\frac{100489}{180625}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{317}{425}\right)^{2}}=\sqrt{\frac{16707364}{180625}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{317}{425}=\frac{2\sqrt{4176841}}{425} x+\frac{317}{425}=-\frac{2\sqrt{4176841}}{425}
Whakarūnātia.
x=\frac{2\sqrt{4176841}-317}{425} x=\frac{-2\sqrt{4176841}-317}{425}
Me tango \frac{317}{425} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}