Whakaoti mō x
x = \frac{2 \sqrt{1066231} - 1268}{17} \approx 46.89230838
x=\frac{-2\sqrt{1066231}-1268}{17}\approx -196.068778968
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-4.25x^{2}=635x-39075
Tangohia te 4.25x^{2} mai i ngā taha e rua.
x-4.25x^{2}-635x=-39075
Tangohia te 635x mai i ngā taha e rua.
-634x-4.25x^{2}=-39075
Pahekotia te x me -635x, ka -634x.
-634x-4.25x^{2}+39075=0
Me tāpiri te 39075 ki ngā taha e rua.
-4.25x^{2}-634x+39075=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-634\right)±\sqrt{\left(-634\right)^{2}-4\left(-4.25\right)\times 39075}}{2\left(-4.25\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4.25 mō a, -634 mō b, me 39075 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-634\right)±\sqrt{401956-4\left(-4.25\right)\times 39075}}{2\left(-4.25\right)}
Pūrua -634.
x=\frac{-\left(-634\right)±\sqrt{401956+17\times 39075}}{2\left(-4.25\right)}
Whakareatia -4 ki te -4.25.
x=\frac{-\left(-634\right)±\sqrt{401956+664275}}{2\left(-4.25\right)}
Whakareatia 17 ki te 39075.
x=\frac{-\left(-634\right)±\sqrt{1066231}}{2\left(-4.25\right)}
Tāpiri 401956 ki te 664275.
x=\frac{634±\sqrt{1066231}}{2\left(-4.25\right)}
Ko te tauaro o -634 ko 634.
x=\frac{634±\sqrt{1066231}}{-8.5}
Whakareatia 2 ki te -4.25.
x=\frac{\sqrt{1066231}+634}{-8.5}
Nā, me whakaoti te whārite x=\frac{634±\sqrt{1066231}}{-8.5} ina he tāpiri te ±. Tāpiri 634 ki te \sqrt{1066231}.
x=\frac{-2\sqrt{1066231}-1268}{17}
Whakawehe 634+\sqrt{1066231} ki te -8.5 mā te whakarea 634+\sqrt{1066231} ki te tau huripoki o -8.5.
x=\frac{634-\sqrt{1066231}}{-8.5}
Nā, me whakaoti te whārite x=\frac{634±\sqrt{1066231}}{-8.5} ina he tango te ±. Tango \sqrt{1066231} mai i 634.
x=\frac{2\sqrt{1066231}-1268}{17}
Whakawehe 634-\sqrt{1066231} ki te -8.5 mā te whakarea 634-\sqrt{1066231} ki te tau huripoki o -8.5.
x=\frac{-2\sqrt{1066231}-1268}{17} x=\frac{2\sqrt{1066231}-1268}{17}
Kua oti te whārite te whakatau.
x-4.25x^{2}=635x-39075
Tangohia te 4.25x^{2} mai i ngā taha e rua.
x-4.25x^{2}-635x=-39075
Tangohia te 635x mai i ngā taha e rua.
-634x-4.25x^{2}=-39075
Pahekotia te x me -635x, ka -634x.
-4.25x^{2}-634x=-39075
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4.25x^{2}-634x}{-4.25}=-\frac{39075}{-4.25}
Whakawehea ngā taha e rua o te whārite ki te -4.25, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\left(-\frac{634}{-4.25}\right)x=-\frac{39075}{-4.25}
Mā te whakawehe ki te -4.25 ka wetekia te whakareanga ki te -4.25.
x^{2}+\frac{2536}{17}x=-\frac{39075}{-4.25}
Whakawehe -634 ki te -4.25 mā te whakarea -634 ki te tau huripoki o -4.25.
x^{2}+\frac{2536}{17}x=\frac{156300}{17}
Whakawehe -39075 ki te -4.25 mā te whakarea -39075 ki te tau huripoki o -4.25.
x^{2}+\frac{2536}{17}x+\frac{1268}{17}^{2}=\frac{156300}{17}+\frac{1268}{17}^{2}
Whakawehea te \frac{2536}{17}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1268}{17}. Nā, tāpiria te pūrua o te \frac{1268}{17} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2536}{17}x+\frac{1607824}{289}=\frac{156300}{17}+\frac{1607824}{289}
Pūruatia \frac{1268}{17} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2536}{17}x+\frac{1607824}{289}=\frac{4264924}{289}
Tāpiri \frac{156300}{17} ki te \frac{1607824}{289} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1268}{17}\right)^{2}=\frac{4264924}{289}
Tauwehea x^{2}+\frac{2536}{17}x+\frac{1607824}{289}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1268}{17}\right)^{2}}=\sqrt{\frac{4264924}{289}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1268}{17}=\frac{2\sqrt{1066231}}{17} x+\frac{1268}{17}=-\frac{2\sqrt{1066231}}{17}
Whakarūnātia.
x=\frac{2\sqrt{1066231}-1268}{17} x=\frac{-2\sqrt{1066231}-1268}{17}
Me tango \frac{1268}{17} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}