Whakaoti mō x
x = \frac{\sqrt{113} + 9}{4} \approx 4.907536453
x=\frac{9-\sqrt{113}}{4}\approx -0.407536453
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=\frac{4\left(1+2x\right)}{1+2x}+\frac{2x}{1+2x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 4 ki te \frac{1+2x}{1+2x}.
x=\frac{4\left(1+2x\right)+2x}{1+2x}
Tā te mea he rite te tauraro o \frac{4\left(1+2x\right)}{1+2x} me \frac{2x}{1+2x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
x=\frac{4+8x+2x}{1+2x}
Mahia ngā whakarea i roto o 4\left(1+2x\right)+2x.
x=\frac{4+10x}{1+2x}
Whakakotahitia ngā kupu rite i 4+8x+2x.
x-\frac{4+10x}{1+2x}=0
Tangohia te \frac{4+10x}{1+2x} mai i ngā taha e rua.
\frac{x\left(1+2x\right)}{1+2x}-\frac{4+10x}{1+2x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{1+2x}{1+2x}.
\frac{x\left(1+2x\right)-\left(4+10x\right)}{1+2x}=0
Tā te mea he rite te tauraro o \frac{x\left(1+2x\right)}{1+2x} me \frac{4+10x}{1+2x}, me tango rāua mā te tango i ō raua taurunga.
\frac{x+2x^{2}-4-10x}{1+2x}=0
Mahia ngā whakarea i roto o x\left(1+2x\right)-\left(4+10x\right).
\frac{-9x+2x^{2}-4}{1+2x}=0
Whakakotahitia ngā kupu rite i x+2x^{2}-4-10x.
-9x+2x^{2}-4=0
Tē taea kia ōrite te tāupe x ki -\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x+1.
2x^{2}-9x-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\left(-4\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -9 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\left(-4\right)}}{2\times 2}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-8\left(-4\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-9\right)±\sqrt{81+32}}{2\times 2}
Whakareatia -8 ki te -4.
x=\frac{-\left(-9\right)±\sqrt{113}}{2\times 2}
Tāpiri 81 ki te 32.
x=\frac{9±\sqrt{113}}{2\times 2}
Ko te tauaro o -9 ko 9.
x=\frac{9±\sqrt{113}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{113}+9}{4}
Nā, me whakaoti te whārite x=\frac{9±\sqrt{113}}{4} ina he tāpiri te ±. Tāpiri 9 ki te \sqrt{113}.
x=\frac{9-\sqrt{113}}{4}
Nā, me whakaoti te whārite x=\frac{9±\sqrt{113}}{4} ina he tango te ±. Tango \sqrt{113} mai i 9.
x=\frac{\sqrt{113}+9}{4} x=\frac{9-\sqrt{113}}{4}
Kua oti te whārite te whakatau.
x=\frac{4\left(1+2x\right)}{1+2x}+\frac{2x}{1+2x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 4 ki te \frac{1+2x}{1+2x}.
x=\frac{4\left(1+2x\right)+2x}{1+2x}
Tā te mea he rite te tauraro o \frac{4\left(1+2x\right)}{1+2x} me \frac{2x}{1+2x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
x=\frac{4+8x+2x}{1+2x}
Mahia ngā whakarea i roto o 4\left(1+2x\right)+2x.
x=\frac{4+10x}{1+2x}
Whakakotahitia ngā kupu rite i 4+8x+2x.
x-\frac{4+10x}{1+2x}=0
Tangohia te \frac{4+10x}{1+2x} mai i ngā taha e rua.
\frac{x\left(1+2x\right)}{1+2x}-\frac{4+10x}{1+2x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{1+2x}{1+2x}.
\frac{x\left(1+2x\right)-\left(4+10x\right)}{1+2x}=0
Tā te mea he rite te tauraro o \frac{x\left(1+2x\right)}{1+2x} me \frac{4+10x}{1+2x}, me tango rāua mā te tango i ō raua taurunga.
\frac{x+2x^{2}-4-10x}{1+2x}=0
Mahia ngā whakarea i roto o x\left(1+2x\right)-\left(4+10x\right).
\frac{-9x+2x^{2}-4}{1+2x}=0
Whakakotahitia ngā kupu rite i x+2x^{2}-4-10x.
-9x+2x^{2}-4=0
Tē taea kia ōrite te tāupe x ki -\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x+1.
-9x+2x^{2}=4
Me tāpiri te 4 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
2x^{2}-9x=4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2x^{2}-9x}{2}=\frac{4}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{9}{2}x=\frac{4}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{9}{2}x=2
Whakawehe 4 ki te 2.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=2+\left(-\frac{9}{4}\right)^{2}
Whakawehea te -\frac{9}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{4}. Nā, tāpiria te pūrua o te -\frac{9}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{9}{2}x+\frac{81}{16}=2+\frac{81}{16}
Pūruatia -\frac{9}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{113}{16}
Tāpiri 2 ki te \frac{81}{16}.
\left(x-\frac{9}{4}\right)^{2}=\frac{113}{16}
Tauwehea x^{2}-\frac{9}{2}x+\frac{81}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{113}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{4}=\frac{\sqrt{113}}{4} x-\frac{9}{4}=-\frac{\sqrt{113}}{4}
Whakarūnātia.
x=\frac{\sqrt{113}+9}{4} x=\frac{9-\sqrt{113}}{4}
Me tāpiri \frac{9}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}