Whakaoti mō x
x=3
Tautapa x
x≔3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=\sqrt{\left(-1\right)^{2}}+\left(0-1\right)^{2}+\left(0-1\right)^{2}
Tangohia te 1 i te 0, ka -1.
x=\sqrt{1}+\left(0-1\right)^{2}+\left(0-1\right)^{2}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
x=1+\left(0-1\right)^{2}+\left(0-1\right)^{2}
Tātaitia te pūtakerua o 1 kia tae ki 1.
x=1+\left(-1\right)^{2}+\left(0-1\right)^{2}
Tangohia te 1 i te 0, ka -1.
x=1+1+\left(0-1\right)^{2}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
x=2+\left(0-1\right)^{2}
Tāpirihia te 1 ki te 1, ka 2.
x=2+\left(-1\right)^{2}
Tangohia te 1 i te 0, ka -1.
x=2+1
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
x=3
Tāpirihia te 2 ki te 1, ka 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}