Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō m (complex solution)
Tick mark Image
Whakaoti mō m
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=\left(6+2m-m^{2}\right)m\times \frac{1}{2}+\frac{1}{2}\left(3-m\right)\left(-m^{2}+2m+3\right)
Tāpirihia te 3 ki te 3, ka 6.
x=\left(6m+2m^{2}-m^{3}\right)\times \frac{1}{2}+\frac{1}{2}\left(3-m\right)\left(-m^{2}+2m+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6+2m-m^{2} ki te m.
x=3m+m^{2}-\frac{1}{2}m^{3}+\frac{1}{2}\left(3-m\right)\left(-m^{2}+2m+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6m+2m^{2}-m^{3} ki te \frac{1}{2}.
x=3m+m^{2}-\frac{1}{2}m^{3}+\left(\frac{3}{2}-\frac{1}{2}m\right)\left(-m^{2}+2m+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te 3-m.
x=3m+m^{2}-\frac{1}{2}m^{3}+\frac{3}{2}\left(-m^{2}\right)+\frac{3}{2}m+\frac{9}{2}-\frac{1}{2}m\left(-m^{2}\right)-m^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te \frac{3}{2}-\frac{1}{2}m ki te -m^{2}+2m+3 ka whakakotahi i ngā kupu rite.
x=3m+m^{2}-\frac{1}{2}m^{3}+\frac{3}{2}\left(-m^{2}\right)+\frac{3}{2}m+\frac{9}{2}+\frac{1}{2}mm^{2}-m^{2}
Whakareatia te -\frac{1}{2} ki te -1, ka \frac{1}{2}.
x=3m+m^{2}-\frac{1}{2}m^{3}+\frac{3}{2}\left(-m^{2}\right)+\frac{3}{2}m+\frac{9}{2}+\frac{1}{2}m^{3}-m^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
x=\frac{9}{2}m+m^{2}-\frac{1}{2}m^{3}+\frac{3}{2}\left(-m^{2}\right)+\frac{9}{2}+\frac{1}{2}m^{3}-m^{2}
Pahekotia te 3m me \frac{3}{2}m, ka \frac{9}{2}m.
x=\frac{9}{2}m+m^{2}+\frac{3}{2}\left(-m^{2}\right)+\frac{9}{2}-m^{2}
Pahekotia te -\frac{1}{2}m^{3} me \frac{1}{2}m^{3}, ka 0.
x=\frac{9}{2}m+\frac{3}{2}\left(-m^{2}\right)+\frac{9}{2}
Pahekotia te m^{2} me -m^{2}, ka 0.
x=\frac{9}{2}m-\frac{3}{2}m^{2}+\frac{9}{2}
Whakareatia te \frac{3}{2} ki te -1, ka -\frac{3}{2}.