Whakaoti mō x
x=\frac{9+9m-3m^{2}}{2}
Whakaoti mō m (complex solution)
m=\frac{\sqrt{189-24x}}{6}+\frac{3}{2}
m=-\frac{\sqrt{189-24x}}{6}+\frac{3}{2}
Whakaoti mō m
m=\frac{\sqrt{189-24x}}{6}+\frac{3}{2}
m=-\frac{\sqrt{189-24x}}{6}+\frac{3}{2}\text{, }x\leq \frac{63}{8}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=\left(6+2m-m^{2}\right)m\times \frac{1}{2}+\frac{1}{2}\left(3-m\right)\left(-m^{2}+2m+3\right)
Tāpirihia te 3 ki te 3, ka 6.
x=\left(6m+2m^{2}-m^{3}\right)\times \frac{1}{2}+\frac{1}{2}\left(3-m\right)\left(-m^{2}+2m+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6+2m-m^{2} ki te m.
x=3m+m^{2}-\frac{1}{2}m^{3}+\frac{1}{2}\left(3-m\right)\left(-m^{2}+2m+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6m+2m^{2}-m^{3} ki te \frac{1}{2}.
x=3m+m^{2}-\frac{1}{2}m^{3}+\left(\frac{3}{2}-\frac{1}{2}m\right)\left(-m^{2}+2m+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te 3-m.
x=3m+m^{2}-\frac{1}{2}m^{3}+\frac{3}{2}\left(-m^{2}\right)+\frac{3}{2}m+\frac{9}{2}-\frac{1}{2}m\left(-m^{2}\right)-m^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te \frac{3}{2}-\frac{1}{2}m ki te -m^{2}+2m+3 ka whakakotahi i ngā kupu rite.
x=3m+m^{2}-\frac{1}{2}m^{3}+\frac{3}{2}\left(-m^{2}\right)+\frac{3}{2}m+\frac{9}{2}+\frac{1}{2}mm^{2}-m^{2}
Whakareatia te -\frac{1}{2} ki te -1, ka \frac{1}{2}.
x=3m+m^{2}-\frac{1}{2}m^{3}+\frac{3}{2}\left(-m^{2}\right)+\frac{3}{2}m+\frac{9}{2}+\frac{1}{2}m^{3}-m^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
x=\frac{9}{2}m+m^{2}-\frac{1}{2}m^{3}+\frac{3}{2}\left(-m^{2}\right)+\frac{9}{2}+\frac{1}{2}m^{3}-m^{2}
Pahekotia te 3m me \frac{3}{2}m, ka \frac{9}{2}m.
x=\frac{9}{2}m+m^{2}+\frac{3}{2}\left(-m^{2}\right)+\frac{9}{2}-m^{2}
Pahekotia te -\frac{1}{2}m^{3} me \frac{1}{2}m^{3}, ka 0.
x=\frac{9}{2}m+\frac{3}{2}\left(-m^{2}\right)+\frac{9}{2}
Pahekotia te m^{2} me -m^{2}, ka 0.
x=\frac{9}{2}m-\frac{3}{2}m^{2}+\frac{9}{2}
Whakareatia te \frac{3}{2} ki te -1, ka -\frac{3}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}