Whakaoti mō x
x=\frac{1}{2}=0.5
x=-\frac{1}{2}=-0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-\frac{1}{4x}=0
Tangohia te \frac{1}{4x} mai i ngā taha e rua.
\frac{x\times 4x}{4x}-\frac{1}{4x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{4x}{4x}.
\frac{x\times 4x-1}{4x}=0
Tā te mea he rite te tauraro o \frac{x\times 4x}{4x} me \frac{1}{4x}, me tango rāua mā te tango i ō raua taurunga.
\frac{4x^{2}-1}{4x}=0
Mahia ngā whakarea i roto o x\times 4x-1.
4x^{2}-1=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 4x.
\left(2x-1\right)\left(2x+1\right)=0
Whakaarohia te 4x^{2}-1. Tuhia anō te 4x^{2}-1 hei \left(2x\right)^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{2} x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te 2x-1=0 me te 2x+1=0.
x-\frac{1}{4x}=0
Tangohia te \frac{1}{4x} mai i ngā taha e rua.
\frac{x\times 4x}{4x}-\frac{1}{4x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{4x}{4x}.
\frac{x\times 4x-1}{4x}=0
Tā te mea he rite te tauraro o \frac{x\times 4x}{4x} me \frac{1}{4x}, me tango rāua mā te tango i ō raua taurunga.
\frac{4x^{2}-1}{4x}=0
Mahia ngā whakarea i roto o x\times 4x-1.
4x^{2}-1=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 4x.
4x^{2}=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{2} x=-\frac{1}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4x}=0
Tangohia te \frac{1}{4x} mai i ngā taha e rua.
\frac{x\times 4x}{4x}-\frac{1}{4x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{4x}{4x}.
\frac{x\times 4x-1}{4x}=0
Tā te mea he rite te tauraro o \frac{x\times 4x}{4x} me \frac{1}{4x}, me tango rāua mā te tango i ō raua taurunga.
\frac{4x^{2}-1}{4x}=0
Mahia ngā whakarea i roto o x\times 4x-1.
4x^{2}-1=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 4x.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-1\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 0 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-1\right)}}{2\times 4}
Pūrua 0.
x=\frac{0±\sqrt{-16\left(-1\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{0±\sqrt{16}}{2\times 4}
Whakareatia -16 ki te -1.
x=\frac{0±4}{2\times 4}
Tuhia te pūtakerua o te 16.
x=\frac{0±4}{8}
Whakareatia 2 ki te 4.
x=\frac{1}{2}
Nā, me whakaoti te whārite x=\frac{0±4}{8} ina he tāpiri te ±. Whakahekea te hautanga \frac{4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{1}{2}
Nā, me whakaoti te whārite x=\frac{0±4}{8} ina he tango te ±. Whakahekea te hautanga \frac{-4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{1}{2} x=-\frac{1}{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}